
’A+’

ALAGAPPA UNIVERSITY
[Accredited with Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

Master of Computer Applications

31533

INTERNET AND JAVA PROGRAMMING

III - Semester

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

Directorate of Distance Education

Master of Computer Applications

III - Semester

31533

INTERNET AND JAVA

PROGRAMMING

ii

Author:

Dr. P. Prabhu

Assistant Professor in Information Technology

Directorate of Distance Education

Alagappa University,

Karaikudi. 630 003.

Reviewer:
Dr. S. Santhosh Kumar

Assistant Professor

Department Of Computer Science

Alagappa University,

Karaikudi 630 003

“The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright notice

may be reproduced or transmitted or utilized or stored in any form or by any means now known or

hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording

or by any information storage or retrieval system, without prior written permission from the

Alagappa University, Karaikudi, Tamil Nadu.

iii

SYLLABI-BOOK MAPPING TABLE

Internet and Java Programming

Syllabi Mapping in Book

BLOCK 1 INTRODUCTION Pages 1 - 28

Basic Internet Concepts:
Connecting to the Internet – Domain Name System – E-
Mail
The World Wide Web
Internet Search Engines – Web Browsers – Chatting and
conferencing on the Internet
Online Chatting
Messaging – Usenet Newsgroup – Internet Relay chat

(IRC) – FTP – Telnet.

BLOCK 2

FUNDAMENTALS OF OBJECT-ORIENTED

PROGRAMMING

Pages 29 – 70

Basic concepts of OOP – Benefits – Applications . Java
Evolution: Features – how java differs from C and C++ -
java and internet- java support system – java environment.

Overview of Java Language –Introduction – Simple Java
Program – Comments – Java Program Structure – Tokens
– Java Statements – Implementing a Java Program – JVM
– Command Line Arguments. Constants – Variables –
Data Types – Type Casting.

Operators and Expressions: Arithmetic Operators –

Relational, Logical, Assignment, Increment and

Decrement, Conditional, Bitwise, Special Operators –

Arithmetic Expressions, Evaluation of Expression –

Precedence of Arithmetic Operators – Type Conversions

– Operator Precedence and associativity – Mathematical

Functions. Decision Making and Branching: If –if…..else

–Nesting of if……. Else – else if– switch. Decision

Making and Looping: While – do – for – jump in loops –

labeled loops.

 BLOCK 3 CLASSES, OBJECTS AND

METHODS

Pages 71–108

Class:
Defining a class –fields –methods –creating objects –
accessing class members – constructors – methods
overloading –static members –nesting of methods –
Inheritance –overriding methods –final variables- classes
–methods

iv

Arrays, Strings and Vectors :
One dimensional Arrays –creating of array – Two

dimensional arrays- strings –vectors – Wrapper classes
– Enumerated Types - Interfaces: Multiple Inheritance

Packages and Interfaces:
Defining interface –Extending interfaces –
Implementing Interfaces -Putting Classes Together

 BLOCK 4

 MULTITHEREADING , EXCEPTION AND

 APPLETS

Pages 109 – 156

Multithreaded Programming
Creating Threads –Extending the thread class – Stopping

and Blocking a thread –Life cycle of a thread - Using

thread methods –Thread Exceptions –Priority –

Synchronization –Implementing the ‘Runnable’

Interface.
Managing Error and Exceptions:
Types of errors –Exceptions –Syntax of Exception

Handling code – Multiple Catch statements –using

finally statement – Throwing our own Exceptions – using

exceptions for Debugging.

Graphics Programming: The Graphics Class – Lines and

Rectangles – Circles and Ellipses – Drawing Arcs -–

Drawing Polygons – Line Graphs – Using Control Loops

in Applets – Drawing Bar Charts.
Applet Programming:
How applets differ from Applications – preparing to

write applets – Building Applet Code – Applet life cycle

– creating an Executable Applet – Designing a Web Page

– Applet Tag – Adding Applet to HTML file Running

the Applet – Passing parameters to Applets Displaying

Numerical values – Getting input from the user.

 BLOCK 5
 MANAGING INPUT/OUTPUT FILES IN JAVA

Pages 157 – 185

Introduction
Concept of streams –stream classes – byte stream
classes – character Stream.

I/O classes:
Using stream –using the file class –Input / output

Exceptions –creation of files – Reading / writing

characters – reading writing bytes Random access files-

Interactive input and output –Other stream classes.

MODEL QUESTION PAPER Pages 186 - 187

v

CONTENTS PAGE NUMBER

BLOCK I INTRODUCTION

UNIT 1 BASIC INTERNET CONCEPTS

1.1 Introduction

1.2 Objectives

1.3 Connecting to the Internet

1.4 Domain Name System (DNS)

1.5 E-mail

1.6 Check Your Progress

1.7 Answers to Check Your Progress Questions

1.8 Summary

1.9 Key Words

1.10 Self-Assessment Questions and Exercises

1.11 Further Readings

1 – 16

UNIT – 2 THE WORLD WIDE WEB (WWW)

2.1 Introduction

2.2 Objectives

2.3 Internet Search Engines

2.4 Web Browsers

2.5 Chatting and conferencing on the Internet

2.5.1 Chatting

2.5.2 Conferencing

2.6 Check your Progress

2.7 Answers to Check Your Progress Questions

2.8 Summary

2.9 Key Words

2.10 Self-Assessment Questions and Exercises

2.11 Further Readings

17-22

UNIT – 3 ONLINE CHATTING

3.1 Introduction

3.2 Objectives

3.3 Online Chatting and Messaging

3.4 Usenet Newsgroup

3.5 Internet Relay chat (IRC)

3.6 File Transfer Protocol (FTP)

3.7 Telnet

3.8 Check Your Progress Questions

3.9 Answers to Check Your Progress Questions

3.10 Summary

3.11 Key Words

3.12 Self-Assessment Questions and Exercises

3.13 Further Readings

23 - 28

vi

BLOCK 2 : FUNDAMENTALS OF OBJECT-ORIENTED

 PROGRAMMING

UNIT - 4 BASIC CONCEPTS OF OBJECT ORIENTED

 PROGRAMMING (OOP)

4.1 Introduction

4.2 Objectives

4.3 Basic concepts of OOP

4.4 Benefits

4.5 Applications

4.6 Check Your Progress Questions

4.7 Answers to Check Your Progress Questions

4.8 Summary

4.9 Key Words

4.10 Self-Assessment Questions and Exercises

4.11 Further Readings

29 -37

UNIT – 5 JAVA EVOLUTION

5.1 Introduction

5.2 Objectives

5.3 Java Evolution

5.4 Features

5.5 How java differs from C and C++

5.6 Java and internet

5.7 Java support system

5.8 Java environment

5.9 Check Your Progress Questions

5.10 Answers to Check Your Progress Questions

5.11 Summary

5.12 Key Words

5.13 Self-Assessment Questions and Exercises

5.14 Further Readings

38 – 45

UNIT – 6 OVERVIEW OF JAVA LANGUAGE

6.1 Introduction

6.2 Objectives

6.3 Overview of Java

6.4 Constants variables and data types

6.5 Operators and Expressions

6.6 Decision Making and Branching

6.7 Looping

6.8 Check Your Progress Questions

6.9 Answers to Check Your Progress Questions

6.10 Summary

6.11 Key Words

6.12 Self-Assessment Questions and Exercises

6.13 Further Readings

46 – 70

vii

BLOCK 3 : CLASSES, OBJECTS AND METHODS

UNIT - 7 CLASS

7.1 Introduction

7.2 Objectives

7.3 Defining a class and fields / methods

7.4 Creating objects – accessing class members

7.5 Constructors

7.6 Method overloading

7.7 Static members

7.8 Nesting of methods

7.9 Inheritance

7.10 overriding methods

7.11 Final variables-classes –methods

7.12 Check Your Progress Questions

7.13 Answers to Check Your Progress Questions

7.14 Summary

7.15 Key Words

7.16 Self-Assessment Questions and Exercises

7.17 Further Readings

71 - 85

UNIT - 8 ARRAYS, STRINGS AND VECTORS

8.1 Introduction

8.2 Objectives

8.3 One dimensional arrays

8.4 Creating of array

8.5 Two dimensional arrays

8.6 Strings

8.7 Vectors

8.8 Wrapper classes

8.9 Enumerated Types

8.10 Interfaces: Multiple Inheritances

8.11 Check Your Progress Questions

8.12 Answers to Check Your Progress Questions

8.13 Summary

8.14 Key Words

8.15 Self-Assessment Questions and Exercises

8.16 Further Readings

86 – 96

UNIT – 9 PACKAGES AND INTERFACES

9.1 Introduction

9.2 Objectives

9.3 Packages:

9.3.1 Defining a package

9.3.2 Importing packages

9.4 Interfaces

9.4.1 Defining interface

97 - 108

viii

9.4.2 Extending interfaces

9.4.3 Implementing Interfaces

9.4.4 Putting Classes Together

9.5 Check Your Progress Questions

9.6 Answers to Check Your Progress Questions

9.7 Summary

9.8 Key Words

9.9 Self-Assessment Questions and Exercises

9.10 Further Readings

BLOCK 4: MULTITHEREADING, EXCEPTION AND APPLETS

UNIT - 10 MULTITHREADED PROGRAMMING

10.1 Introduction

10.2 Objectives

10.3 Creating Threads

10.4 Extending the thread class

10.5 Stopping and blocking a thread

10.6 Life cycle of a thread

10.7 Using thread methods

10.8 Thread Exceptions

10.9 Priority

10.10 Synchronization

10.11 Implementing the ‘Runnable’ Interface

10.12 Check Your Progress Questions

10.13 Answers to Check Your Progress Questions

10.14 Summary

10.15 Key Words

10.16 Self-Assessment Questions and Exercises

10.17 Further Readings

109 - 129

UNIT – 11 MANAGING ERROR AND EXCEPTIONS

11.1 Introduction

11.2 Objectives

11.3 Types of errors

11.4 Exceptions

11.4.1 Syntax of Exception Handling code

11.4.2 Multiple Catch statements

11.4.3 Using finally statement

11.4.4 Throwing our own Exceptions

11.4.5 Using exceptions for Debugging

11.5 Graphics Programming:

11.5.1 The Graphics Class

11.5.2 Drawing Lines, Rectangle, Circles, Ellipses, Arcs and

Polygons

11.5.3 Line Graphs

11.5.4 Using Control Loops in Applets

11.5.5 Drawing Bar Charts.

11.6 Check Your Progress Questions

130 - 146

ix

11.7 Answers to Check Your Progress Questions

11.8 Summary

11.9 Key Words

11.10 Self-Assessment Questions and Exercises

11.11 Further Readings

UNIT – 12 APPLET PROGRAMMING

12.1 Introduction

12.2 Objectives

12.3 How applets differ from Applications

12.4 Preparing to write applets

12.5 Building Applet Code

12.6 Applet life cycle

12.7 Creating an Executable Applet

12.8 Designing a Web Page

12.9 Running the Applet

12.10 Passing parameters to Applets

12.11Displaying Numerical values

12.12 Getting input from the user

12.13 Check Your Progress Questions

12.14 Answers to Check Your Progress Questions

12.15 Summary

12.16 Key Words

12.17 Self-Assessment Questions and Exercises

12.18 Further Readings

147 -156

BLOCK 5 : MANAGING INPUT/OUTPUT FILES IN JAVA

UNIT 13 INTRODUCTION

13.1 Introduction

13.2 Objectives

13.3 Stream & Stream classes

13.3.1 Byte stream classes

13.3.2 Character Stream

13.4 Check Your Progress Questions

13.5 Answers to Check Your Progress Questions

13.6 Summary

13.7 Key Words

13.8 Self-Assessment Questions and Exercises

13.9 Further Readings

157- 165

UNIT 14 I/O CLASSES

14.1 Introduction

14.2 Objectives

14.3 Using stream

14.4 Using the file class

14.5Input / Output Exceptions

14.6 Creation of files

166 -185

x

14.7 Reading / writing characters

14.8 Reading / writing bytes

14.9 Random access files

14.10 Interactive input and output

14.11 Check Your Progress Questions

14.12 Answers to Check Your Progress Questions

14.13 Summary

14.14 Key Words

14.15 Self-Assessment Questions and Exercises

14.16 Further Readings

MODEL QUESTION PAPER 186-187

Basic Internet Concepts

NOTES

Self-Instructional Material

1

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

BLOCK – I INTRODUCTION

UNIT 1

BASIC INTERNET CONCEPTS

Structure

1.1 Introduction

1.2 Objectives

1.3 Connecting to the Internet

1.4 Domain Name System (DNS)

1.5 E-mail

1.6 Check Your Progress

1.7 Answers to Check Your Progress Questions

1.8 Summary

1.9 Key Words

1.10 Self-Assessment Questions and Exercises

1.11 Further Readings

1. 1 Introduction

During the first two decades, computer systems were highly

centralized, usually within a single large room called computer centre.

The concept of the computer centre as room with a large computer to

which users bring their work for processing is rapidly becoming

obsolete. A single computer serving all of the organizations

computational needs is rapidly being replace in which a large number

of separate but interconnected computers do the job. The systems are

called computer networks.

Computer network is a set of interconnected autonomous computers to

communicate each other. Network usually fall into one of two groups:

Local Area Networks (LAN) and Wide Area Networks (WAN). Local

area networks connect computers located near each other. Wide Area

Network consists of computers in different cities, states or even

countries. Personal Area Network (PAN) is a network which enables

communication between computer devices near a person. Virtual

Private Network (VPN) is a network technology that is used to create a

Basic Internet Concept

NOTES

Self-Instructional Material

2

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

safe and encrypted connection over a less secure network such as internet.

Storage Area Network (SAN) is a block base storage. It is a technology by

which high speed architecture connects with servers to their logical disk

units.

Internet is a network of network connected to World Wide Web

(WWW).Internet gives people the opportunity to connect with anyone in

the world at any given time and allows business to be conducted more

efficiently and on a grander scale. In essence, the internet makes the world

much more efficient. Internet uses the standard Internet Protocol

(TCP/IP).Every computer in internet is identified by a unique IP address.IP

Address is a unique set of numbers (such as 110.22.31.124) which

identifies a computer location.

The first workable prototype of the Internet came in the late 1960s with the

creation of ARPANET, or the Advanced Research Projects Agency

Network. ... ARPANET adopted TCP/IP on January 1, 1983, and from

there researchers began to assemble the “network of networks” that

became the modern Internet.Ten years of research brought Local Area

Ethernet Networks (LANs) and workstations were developed to get

connected to LAN.Computers connected to ARPANET used a standard or

rule to communicate with each other with NCP (National Control

Protocol).Protocol is a network term used to indicate the standard used by

a network for communication.Rapid change in information technology

suppressed NCP and brought TCP/IP (Transmission Control

Protocol/Internet Protocol) in to the world of networking

Need for Internet:

Most of us use, the internet as a way to connect with other people, sharing

information, sharing of files, for entertainment, socializing, and many

other things that could be beneficial for us.The internet is necessary for the

following reasons;

Communication – People use the Internet to communicate with one

another using e-mail. Software has made it possible to stream voice and

video across the world with minimal delay, and email has become the

main means of communicating for many a modern person.

Entertainment – Many people use the Internet to enjoy themselves and to

engage in personal interests. In recent years, multiple player games and

virtual worlds have engaged the time and money of many. Plus, video and

music are easy to find, stream and download.

Basic Internet Concepts

NOTES

Self-Instructional Material

3

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Market – People use the Internet to research, find and buy services and

products or to target and sell to the ultimate consumer. In effect, the

Internet has become THE best way to buy and sell merchandise, as

online “stores” are open 24 hours a day, 7 days a week.

Ask for Help - Some people use the Internet to ask for help. People ask

for help in the form of emotional support, medical advice, or even

simply listening.

Education and Research - People use internet for education to learn

and research purpose

Electronic Newspapers - People use electronic news papers and

magazines to know the current affairs.

Relationships& Discussion Groups – People use the Internet to find,

maintain, or end relationships. But people can get addicted to social

networks, too.

The other needs of internet include downloading files, utilizing

services through cloud computing job hunting real time applications

such as railway reservation and online shopping.Internet allows us to

use many services like:

 Internet Banking

 Matrimonial Services

 Online Ticket Booking

 Online Bill Payment

 Data Sharing

 E-mail

In this unit you will learn about the structure of DNS, Name Server

concept and resolver, e-mail communication and world wide web..

1.2 Objectives

After going through the unit you will be able to;

 Understand the fundamentals of computer networks

 Know about the Domain Name System

 Discuss about e-mail communication system

 Learn how to connect to the Internet

Basic Internet Concept

NOTES

Self-Instructional Material

4

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

1.3 Connecting to the Internet

When connecting one or more computers for communication, it forms a

network. We can also connect two or more networks and form an

internetwork or internet.

An Internet service provider (ISP) is an organization that provides services

for accessing, using, or participating in the Internet. Internet services

typically provided by ISPs include Internet access, Internet transit, domain

name registration, web hosting, Usenet service, and colocation. Internet

service providers (ISPs) offering broadband and narrow band internet

services in India. They are namely Jio,Airtel,Vodaphone,Idea Cellular,

BSNL,Tata Teleservices, ACT,MTNL and Hathway.

The type of Internet service you choose will largely depend on which

Internet service providers (ISPs) serve your area, along with the types of

service they offer. Here are some common types of Internet service.

Dial-up:

This is generally the slowest type of Internet connection, and you should

probably avoid it unless it is the only service available in your area. Dial-

up Internet uses your phone line, so unless you have multiple phone lines

you will not be able to use your landline and the Internet at the same time.

Leased Connection

Leased connection is also known as direct Internet access or LevelThree

connection. It is the secure, dedicated and most expensive,level of Internet

connection. With leased connection, your computeris dedicatedly and

directly connected to the Internet using highspeed transmission lines. It is

on-line twenty-four hours a day, sevendays a week. Leased Internet

connections are limited to large corporations and universities who could

afford the cost.

Digital Subscriber Line (DSL):

Digital Subscriber Line (DSL) is the newest technology being usedfor

Internet access. DSL connects your home or office to the Internetthrough

the same telephone wire that comes from the telephonepole on the street.

Like ISDN, with DSL, user can make and receivetelephone calls while

connected simultaneously to the Internet.However, DSL service is limited

Basic Internet Concepts

NOTES

Self-Instructional Material

5

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

in the distance that you can be fromthe provider’s point of presence

(POP).To use DSL you will need a DSL modem (also called a router),

aNetwork Interface Card (NIC), and a telephone line. DSL is also

relatively new technology that is just being introduced in many

places.Hardware developers are working with service providers to

make theservice cost affordable for consumers. As time goes by, the

serviceshould become more widely available at a reasonable price.

Cable:

Cable service connects to the Internet via cable TV, although you do

not necessarily need to have cable TV in order to get it. It uses a

broadband connection and can be faster than both dial-up and DSL

service; however, it is only available where cable TV is available.

Satellite:

A satellite connection uses broadband but does not require cable or

phone lines; it connects to the Internet through satellites orbiting the

Earth. As a result, it can be used almost anywhere in the world, but the

connection may be affected by weather patterns. Satellite connections

are also usually slower than DSL or cable.

3G and 4G:

3G and 4G service is most commonly used with mobile phones, and it

connects wirelessly through your ISP's network. However, these types

of connections aren't always as fast as DSL or cable. They will also

limit the amount of data you can use each month, which isn't the case

with most broadband plans.

Modem

Once you have your computer, you really don't need much additional

hardware to connect to the Internet. The primary piece of hardware you

need is a modem.A modem transmits binary data by representing a 0 as

decreased frequency signal and 1 as increased frequency signal. The

computer uses a modem to translate binary data into analog signal for

transmission over telephone line. The figure 1.1 shows the example

model used to connect Internet.

Basic Internet Concept

NOTES

Self-Instructional Material

6

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Figure 1.1A Modem

Router

A router is a hardware device that allows you to connect several computers

and other devices to a single Internet connection, which is known as a

home network. Many routers are wireless, which allows you to create a

home wireless network, commonly known as a Wi-Fi network.

Figure 1.2 Router

Web Browser

A web browser, or simply "browser," is a Software / application used to

access and view websites. Common web browsers include Microsoft

Internet Explorer, Google Chrome, Mozilla Firefox, and Apple Safari.

1.3 Most Popular Web Browsers

Basic Internet Concepts

NOTES

Self-Instructional Material

7

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

The primary function of a web browser is to render HTML, the code

used to design or "mark up" webpages.Browsers' benefits and key

features include;

 They're free to download.

 You can have more than one on your computer.

 They all work in a similar way.

 They allow users to explore websites anywhere on the internet.

 Can be personalized by allowing users to add favorites or set a

different home page (the first page that you see when you open

your browser).

Search Engine:

A search engine is a web-based tool that enables users to locate

information on the World Wide Web. Generally, people use search

engines for one of three things: research, shopping, or

entertainment. Most people who are using a search engine are

doing it for research purposes. They are generally looking for

answers or at least to data with which to make a decision. Types of

Search Engines include;

 Crawler Based Search Engines.

 Directories Search Engines.

 Hybrid Search Engines.

 Meta Search Engines

Popular examples of search engines are Google, Yahoo!, ask,altavista

and MSN Search.

1.4 Most Popular Search engines

Basic Internet Concept

NOTES

Self-Instructional Material

8

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

1.4 Domain Name System (DNS)

Network computer users generally prefer to use domain names instead of

dotted decimal addresses. Internet programs need to use 32 bit IP

addresses. As such to ensure successful internetwork communications

between the programs and users we need fast, reliable method of

translating between address schemes. For this reason, network engineers

developed name-server software. A name server is a program that

translates domain name into IP addresses.

Domain Name System DNS is a client/ server based distributed database

system. The DNs distributes specific address details among various name

servers.

The internet Domain Name system uses names like ftp.microsoft.com to

identify specific computer.Each element is referred as a label. For example

ftp.microsoft.com consists of three label namely ftp, microsoft and com.

Your separate internet name labels with a period that you read as a word

dot. In other words, you would say the name ftp.microsoft.com as ftp dot

Microsoft dot com. Domain is defined as a sphere of activity, concern or

function. The label Microsoft describes the organisation or entity the owns

the compute Microsoft corporation. The label com represents organisation

uses the computer for commercial enterprises.

The following figure 1.5 shows the hierarchy of Domain name system. It

can be viewed as organization chart. The top of the chart is an unnamed

starting point called root. The DNS root is like directory on the disk –

neither root has a name. However, like directories on the computer, each

domain has the name. Just each directory is divided into sub-directories;

the Internet Domain further divides each domain into sub-domains.

Figure 1.5 The hierarchical structure of Internet Domain Name

System

ftp://ftp.microsoft.com/
ftp://ftp.microsoft.com/
ftp://ftp.microsoft.com/

Basic Internet Concepts

NOTES

Self-Instructional Material

9

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

The level immediately below the root of the Internet DNS consists of

three top domains. The internet usually divides this group of domains

into seven basic categories. The given table identifies the seven basic

classifications of the organizational domains.

Domain Description

com Commercial organizations such as business

edu Educational organizations such as universities

gov US government organizations etc

Int International organizations

mil US military organization

net A network that doesn’t fit into one of the other

organizational domain categories

org An organization that doesn’t fit into one of the other

organizational domain categories

Uniform Resource Locators (URL)

An URL identifies a resource, normally a file. It is the computer

address of a resource, such as web document, a file or a program. An

example of url is https://www.alagappauniversity.ac.in/. When typing the

URL into your browsers location field and hit enter, your browser will

attempt to connect you to the resource at that URL address. After you connect

to a web server, your browser displays the web information set to it by the

server.

1.5 Electronic Mail – E-mail

Electronic mail is the ability to send and receive messages via

computer. On most networks, it is the most widely used application. It

is different from the other network applications. It is a store-

and=forward service that works very much like regular postal

service.Features of e-mail include;

 One-to-one or one-to-many communications

 Instant communications

 Physical presence of recipient is not required

 Most inexpensive mail services, 24-hours a day and seven days

a week

 Encourages informal communications

https://www.alagappauniversity.ac.in/

Basic Internet Concept

NOTES

Self-Instructional Material

10

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Components of an E-mail Address

As in the case of normal mail system, e-mail is also based upon theconcept

of a recipient address. The email address provides all of theinformation

required to get a message to the recipient from anywhere in the world.

Consider the e-mail ID

dde@alagappauniversity.ac.in

In the example above, “dde” is the local part, which is the name of a

mailbox on the destination computer, where finally the mail will be

delivered. alagappauniversity is the mail server where the mailbox “dde”

exist, .com is the type of organization on net, which is hosting the mail

server.There are six main categories;

 com Commercial institutions or organization

 edu Educational institutions

 gov Government site

 mil Military site

 net Gateways and administrative hosts

 org Private organizations

E-mail lets people communicate synchronously; you can send mail

messages whenever you want, and the people who receive mail from you

can read the message whenever they want.

When you send e-mail, your message is forwarded from one computer to

another until destination is reached. At the destination, your message goes

to the recipient’s system mail box, a file that holds the users incoming

messages.

The following figure 1.6 shows the basic elements of e-mail system.

Figure 1.6 Components of e-mail system

mailto:dde@alagappauniversity.ac.in

Basic Internet Concepts

NOTES

Self-Instructional Material

11

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Each e-mail message has a sender and receiver, both of which have a

user interface into the Internet electronic mail system.

E-mail Message Components

E-mail message comprises of different components: E-mail Header,

Greeting, Text, and Signature. These components are described in the

following figure 1.7

Figure 1.7 e-mail components

E-mail Header

The first five lines of an E-mail message is called E-mail header. The

header part comprises of following fields:

 From

 Date

 To

Basic Internet Concept

NOTES

Self-Instructional Material

12

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

 Subject

 CC

 BCC

From

The From field indicates the sender’s address i.e. who sent the e-mail.

Date

The Date field indicates the date when the e-mail was sent.

To

The To field indicates the recipient’s address i.e. to whom the e-mail is

sent.

Subject

The Subject field indicates the purpose of e-mail. It should be precise and

to the point.

CC

CC stands for Carbon copy. It includes those recipient addresses whom we

want to keep informed but not exactly the intended recipient.

BCC

BCC stands for Black Carbon Copy. It is used when we do not want one or

more of the recipients to know that someone else was copied on the

message.

Greeting

Greeting is the opening of the actual message. Eg. Hi Sir or Hi Guys etc.

Text

It represents the actual content of the message.

Signature

Basic Internet Concepts

NOTES

Self-Instructional Material

13

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

This is the final part of an e-mail message. It includes Name of Sender,

Address, and Contact Number.

Advantages

E-mail has proved to be powerful and reliable medium of

communication. Here are the benefits of E-mail:

 Reliable

 Convenience

 Speed

 Inexpensive

 Printable

 Global

Disadvantages

Apart from several benefits of E-mail, there also exists some

disadvantages as discussed below:

 Forgery

 Overload

 Misdirection

 Junk

 No response

The Internet e-mail system consists of an outgoing queue, a client

process, a server process and mailboxes for incoming mail. A mail box

can refer to user address or a container file that stores e-mail data. The

user agent replaces the e-mail program and the message transfer agent

replaces the client and server process. Most Internet e-mail

specifications refer to an e-mail program as a user agent. Likewise, it

message transfer agent is a client or server program that performs e-

mail related services such as sending and receiving mail for a host

computer. You interact with user agent program which in turn

interacts with an email container on your behalf. At the same time, the

MTA program acts as an agent on behalf of a host computer. The user

agent shields your from interacting with a wide variety of user agents

or other MTA’s.

Conceptually, the user agent to an email system is separate from the

message transfer agent. Although you can implement both the user

agent and message transfer agent in a single program. You should

isolate the design of each agent in separate modules. The agents perform

Basic Internet Concept

NOTES

Self-Instructional Material

14

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

very different functions through they are closely related. On the Internet,

the message transfer agent represents the internet email. The MTA’s that

establish TCP connections to communicate with other MTAs typically use

the Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol (SMTP)

The core of the internet’s e-mail system is the message transfer agent. The

message transfer agent represents the e-mail system to a host computer.

Although internet e-mail users rarely work with a message transfer agent

MTAs play a crucial role in all e-mail transmissions.

SMTP is similar to FTP in many ways, including the same simplicity of

operation. SMTP uses TCP port number 25. It uses spools or queues.

When a message is sent to SMTP, it places it in a queue. It attempts to

forward the message from the queue whenever it connects to remote

machines.

1.6 Check Your Progress

1. What is Domain Name Server? Explain its structure.

2. List some organizational domains and its description.

3. Name some of Internet Service Providers (ISP) in India.

1.7 Answers to Check Your Progress Questions

1. The internet Domain Name system uses names like

ftp.microsoft.com to identify specific computer.

2. List of domains are

Domain Description

com Commercial organizations such as business

edu Educational organizations such as

universities

gov US government organizations etc

Int International organizations

mil US military organization

net A network that doesn’t fit into one of the

other organizational domain categories

org An organization that doesn’t fit into one of

the other organizational domain categories

ftp://ftp.microsoft.com/

Basic Internet Concepts

NOTES

Self-Instructional Material

15

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

3. Jio, Airtel, Vodafone, Idea Cellular, BSNL, Tata Teleservices,

ACT,MTNL and Hathway are some of common Internet

Service Providers in India.

1.8 Summary

Computer network is a set of interconnected autonomous computers to

communicate each other. When connecting one or more computers for

communication, it forms a network. We can also connect two or more

networks and form an internetwork or internet. Electronic mail is the

ability to send and receive messages via computer.

1.9 Key Words

 Electronic Mail - Electronic mail is the ability to send and receive

messages via computer. On most networks, it is the most widely

used application.

 Computer network - It is a set of interconnected autonomous

computers to communicate each other

 Router A router is a hardware device that allows you to connect

several computers and other devices to a single Internet connection,

which is known as a home network.

1.10 Self-Assessment Questions and Exercises

1. Describe the functions of e-mail.

2. Explain in detail about Domain Name system with examples.

3. How will you connect with internet? What are the components

required to connect Internet?

4. Explain in detail about some common types of Internet service.

1.11 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java

Programming, New Age International Publishers, 2004

Basic Internet Concept

NOTES

Self-Instructional Material

16

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

2. E. Balagurusamy, Programming with Java, 4e,Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998

The world wide web(WWW)

NOTES

Self-Instructional Material

17

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

UNIT – 2

THE WORLD WIDE WEB (WWW)

Structure

2.1 Introduction

2.2 Objectives

2.3 Internet Search Engines

2.4Web Browsers

2.5Chatting and conferencing on the Internet

2.5.1 Chatting

2.5.2 Conferencing

2.6 Check your Progress

2.7Answers to Check Your Progress Questions

2.8Summary

2.9Key Words

2.10Self-Assessment Questions and Exercises

2.11Further Readings

2.1 Introduction

The term World Wide Web (WWW, or W3 or Web) and internet are

widely used word in the communication technology. World Wide Web is

a collection millions of linked HTML(Hyper Text Markup Language)

pages on the internet. We can view text, graphics, video, and hear audio

when we use our browser to access web sites. The internet is a vehicle

that lets computers around the world communicates. WWW was

originally developed at CERN(Conseil European Pour la Recherche

Nucleaire), Geneva’s European Laboratory for Particle Physics, the high-

energy physics research centre in Switzerland. Today more than one

million web servers exist in the world. No web has grown dramatically

and has taken on a new appearance. The web is no longer limited to

scientific information exchange by researchers. Business uses the web to

advertise their products.

To surf the web, we must have a computer with a modern and a telephone

connection. Also we need browser software such as Netscape navigator or

Internet Explorer or Google Chrome. A web browser is used to view the

web pages on the internet.WWW clients on theinternet can display pages

from any of the nearly 10000 web servers. Each time we choose a link;

WWW Connects to the appropriate server retrieves the next page and

returns control to the local client. WWW is thus an efficient method of

finding and using the information widely dispersed throughout the world.

The World Wide Web(WWW)

NOTES

Self-Instructional Material

18

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

In Internet, Web operations are depending on a protocol called Hyper Text

Transfer Protocol (HTTP). Hyper Text Transfer Protocol (HTTP) is used

to transfer HTML files between web pages over the World Wide Web.

HTML is the mostly widely used language for developing web pages. All

web browsers follow internet standards for accessing web pages. World

Wide Web is composed of a set of HTML web pages.

2.2 Objectives

After going through the unit you will be able to;

 Understand about the World Wide Web

 Know about web browsers and its usage

 Explain about chatting and conferencing on the internet

 Discuss the functions of internet search engines

 List the names of various search engines

 Name various types of web browsers.

2.3 Internet Search Engines

Search engine is a service that allows Internet users to search for content

via the World Wide Web (WWW). A user enters keywords or key phrases

into a search engine and receives a list of Web content results in the form

of websites, images, videos or other online data. The list of content

returned via a search engine to a user is known as a search engine results

page (SERP).(Source ;Tecopedia)

For example

 Google.

 Bing.

 Yahoo.

 Ask.com.

 AOL.com.

 Baidu.

 Wolframalpha.

 DuckDuckGo.

2.4 Web Browser

A browser is a software application used to locate, retrieve and display

content and languages such as XML or Extensible Markup Language,

HTML or Hyper Text Markup Language. on the World Wide Web,

The world wide web(WWW)

NOTES

Self-Instructional Material

19

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

including Web pages, images, video and other files. As a client/server

model, the browser is the client run on a computer that contacts the Web

server and requests information. There are varieties of web browsers

available with different advantages and working on different platforms.

The most popular web browsers are;

 Hot Java

 Netscape Navigator

 Avant

 Internet Explorer

 Google Chrome

 Mozilla fire box

 Opera and

 Safari.

Internet Explorer was developed by Microsoft in 1994 and released in

1995. Mozilla fire box browser was developed by Mozilla Corporation in

2004. This is the second most popular browser after Internet Explorer.

Safari is the web browser made by apple with compatibility with

Microsoft Windows iPhone OS and Mac OS. Opera is a web browser

developed by Opera Software specially used for mobile applications.

Google Chrome is another web browser developed by Google in

September 2008 for Windows. Netscape navigator is also a web browser

developed by Netscape communications which supports almost all

Operating systems. The following figure 2.1 shows the example internet

explorer web

browser.

Figure 2.1 Example Web Browser – Internet Explorer

The most distinguish areas of web browsers are platform (Unix,

Windows, Mac, Linux), protocols(FTP,SMTP,HTTP,IMAP), GUI

(Graphical User Interface), mobile compatibility and open source.

The World Wide Web(WWW)

NOTES

Self-Instructional Material

20

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

2.5Chatting and Conferencing on the Internet

Internet is used in many areas; some of the areas where the internet is used

is as follows;

 e-mail

 website

 e-commerce

 social media

 resource sharing

 Conferencing

 Chatting

 Online courses

2.5.1 Chatting

Chatting is almost as good as speaking to the other person over the phone.

Online chatting is a online conversation between users or group of users.

There are many free chat sites on the web through which you can

communicate with one or many people from different locations. After you

log on to free chat site, go to the specific chat room where you have agreed

to meet other person. For example:

1. Type the site address www.yahoo.com

2. Click on chat option

3. Click on sign up for yahoo chat to create a new account

4. If you already have an account with yahoo you can enter Yahoo Id

and Password and click on Sign In button.

5. Click on Start Chatting button.

2.5.2 Conferencing

Conferencing comprises the technologies for transmission of audio/video

signals by users from different places for communication between users on

the network. Video conferencing is also called as video collaboration is a

type of network groupware. Video conferencing systems during 1990’s are

expensive communication systems with network and software

requirements. Video conferencing using two protocols such as Session

Initialization Protocol (SIP) and H3.xxx.

SIP is a protocol for creating, modifying and terminating sessions with one

or more users. The architecture of SIP is similar to Hyper Text Markup

Protocol(HTTP). The client request services to the server for processing

the tasks. The server receives the request and processes it and responds

http://www.yahoo.com/

The world wide web(WWW)

NOTES

Self-Instructional Material

21

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

back to the client. This protocol itself provides reliability, which is not

depending on TCP/IP.

The SIP system has two components; user agents and network servers. A

user agent is an end system acting on behalf the user. It has two parts

namely client and server. There are three types of network servers namely

proxy server, registration server and redirect server. A registration server

receives updates about the user location. A proxy servers receives the

message and forwards to next-hop server. A redirect server receives the

message, and determine the next-hop server to the client.

H.3XX are ITU-T study group XVI umbrella recommendations for video

conferencing. These recommendations refer other recommendations that

include multiplexing, control and signalling.

2.6 Check your Progress

1. What is web browser? Give examples

2. List any two internet search engines.

2.7 Answers to Check Your Progress Questions

1. A browser is a software application used to locate, retrieve and

display content and languages such as XML or Extensible Markup

Language, HTML or Hyper Text Markup Language. on the World

Wide Web, including Web pages, images, video and other files.

Examples : Google chrome and Internet Explorer

2. The internet search engines are : google, altavista, yahoo

2.8 Summary

World Wide Web (WWW) is a collection of linked HTML(Hyper Text

Markup Language) pages on the internet. Search engine is a service that

allows Internet users to search for content via the World Wide Web

(WWW). A browser is a software application used to locate, retrieve and

display content and languages such as XML or Extensible Markup

Language, HTML or Hyper Text Markup Language. on the World Wide

Web, including Web pages, images, video and other files.

Conferencing comprises the technologies for transmission of audio/video

signals by users from different places for communication between users

on the network. Video conferencing is also called as video collaboration

is a type of network groupware.

The World Wide Web(WWW)

NOTES

Self-Instructional Material

22

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

2.9 Key Words

 Session Initialization Protocol - SIP is a protocol for creating,

modifying and terminating sessions with one or more users.

 Chatting is almost as good as speaking to the other person over the

phone.

2.10 Self-Assessment Questions and Exercises

1. What do you meant by chatting

2. What are two types of protocols used for video conferencing?

Explain

3. Write short note on : web Browser

4. List any two names of web browsers.

5. Explain the purpose of internet search engines? Explain.

2.11 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java Programming,

New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998.

Online Chatting

 NOTES

Self-Instructional Material

23

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

UNIT – 3

ONLINE CHATTING

Structure

3.1 Introduction

3.2 Objectives

3.3Online Chatting and Messaging

3.4Usenet Newsgroup

3.5Internet Relay chat (IRC)

3.6 File Transfer Protocol (FTP)

3.7Telnet

3.8 Check Your Progress Questions

3.9Answers to Check Your Progress Questions

3.10Summary

3.11Key Words

3.12Self Assessment Questions and Exercises

3.13Further Readings

3.1 Introduction

Communication plays major role in internet applications. It provides

sharing of information, messages between user and/or group of users.

There are various applications such as online chatting, messenger and user

networks groups provide opportunity to share information over the

network.

3.2 Objectives

After going through the unit you will be able to;

 Understand about online chatting

 Know about the message between network user

 Explain about the user network groups

 Discuss about file transfer protocol

 Learn about the use of Telnet

3.3 Online Chatting and Messaging

Chatting is to talk in a way with one person with other or group of persons

over the telecommunication especially internet. Also it refers to the way of

Online Chatting

NOTES

Self-Instructional Material

24

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

communicating or interacting with users over internet. It can be

established by connecting one user with other users using chat software.

The chat software creates one or more rooms for users to communicate

with each other according to the user’s interest. To chat with users, one

who need internet relay chat or instant messenger application. Chat may

be delivered through verbal, audio, text and video.

3.4 Usenet Newsgroup

Usenet Newsgroup is storage with in the usenet system where the users

from different geographical locations post their messages over internet.

The usenet files uploaded by the users are stored in the servers

distributed over the various geographical locations and connected

through the internet. The sending and receiving of files is performed by

the Network News Transfer Protocol (NNTP) which allows connection

to Usenet servers and data transfer over the internet. The communication

is established between server-server and client-server. Newsgroups are

divided into two ways; text and binary which depend on bandwidth.

3.5 Internet Relay chat (IRC)

Internet Relay Chat (IRC) is an application layer protocol which is used

to communicate in the form of text. It was developed in August 1988, by

Jarkko Oikarinel. IRC is used to enable the users to request to a server

using server side programming software and communicate with each

other online.

The IRC client software is used to connect to the IRC server. There are

some small IRC servers available for Internet Relay chat.The small IRC

servers are namely OperaNet which has less number of users. The

medium IRC servers are freenode and Dalnet which may have 40,000

users.The big IRC servers may consist of over 100,000 users; for

example, EFNet and UnderNet. The example IRC is shown in figure 3.1

Online Chatting

 NOTES

Self-Instructional Material

25

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

3.1 Internet Relay Chat System

IRC is a messaging application for chatting which consists of set of rules

and software for client/server technology. One can start a chat room(Called

a channel) or join an existing chat room. Protocols are used to identify

existing chat groups. The nick names can be used to identify particular user

or group of users. Some of chat applications provide users registration and

profile manipulation.

3.6 File Transfer Protocol (FTP)

File transfer protocol, usually called FTP, is a utility for managing files

across machines without having to establish a remote session with Telnet.

FTP enables to transfer files back and forth, manage directions, and access

electronic mail. FTP is not designed to enable access to another machine to

execute programs, but it is the best utility for file transfer.

FTP uses two TCP channels. TCP port 20 is the data channel, and port 21

is the command channel. FTP is different from most other TCP/IP

application programs in that it does uses two channels, enabling

simultaneous transfer of FTP commands and data.

FTP transmission Modes

The transmission modes specify how FTP transmits the file across the TCP

data connection. FTP defines three transmission modes;

Online Chatting

NOTES

Self-Instructional Material

26

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

 Block mode

 Compressed mode and

 Stream mode

3.7 Telnet

The Telnet (Telecommunication network) program is intended to

provide a remote login or virtual terminal capability across a network. In

other words, a user on machine A should be able to log into machine B

anywhere on the network, and as far as user is concerned, it appears that

the user is seated in front of the machine B. The telnet service is

provided through TCPs port number 3. The term Telnet is used to refer

to both the program and the protocol that provide these services.

When two machines communicate using Telnet, Tenet itself can

determine and set the communications and terminal parameters for the

session during connection phase.

The Telnet protocol includes the capability not to support a service that

one end of the connection cannot handle. When a connection has been

established by Telnet, both ends have agreed upon a method for the two

machines to exchange information, taking the load off the server CPU

for a sizable amount of this work. The figure 3.2 shows the Microsoft

telnet client window.

Figure 3.2 Microsoft Telnet Client Window

Telnet involves a process on the server that accepts incoming request for

a Telnet Session. On UNIX systems, this process is called tented. On

Windows NT and other PC based operating systems, a Telnet Server

program is usually involved. The client runs a program, usually called

telnet that attempts the connection to the server.

Online Chatting

 NOTES

Self-Instructional Material

27

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

3.8 Check Your Progress Questions

1 What do you meant by File Transfer Protocol?

2. List various types of FTP transmission modes.

3. Write short note on: Telnet

3.9 Answers to Check Your Progress Questions

1. File transfer protocol, usually called FTP, is a utility for managing files

across machines without having to establish a remote session with

Telnet. FTP enables to transfer files back and forth, manage directions,

and access electronic mail.

2. Block mode, Compressed mode and Stream mode

3. The telnet (Telecommunication network) program is intended to

provide a remote login or virtual terminal capability across a network.

In other words, a user on machine A should be able to log into machine

B anywhere on the network, and as far as user is concerned, it appears

that the user is seated in front of the machine B.

3.10 Summary

Usenet Newsgroup is storage with in the usenet system where the users

from different geographical locations post their messages over internet.

Internet Relay Chat (IRC) is an application layer protocol which is used to

communicate in the form of text. File transfer protocol, usually called FTP,

is a utility for managing files across machines without having to establish a

remote session with Telnet.

3.11 Key Words

 Chatting is to talk in a way with one person with other or group of

persons over the telecommunication especially internet.

 The telnet (Telecommunication network) program is intended to

provide a remote login or virtual terminal capability across a

network.

Online Chatting

NOTES

Self-Instructional Material

28

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

3.12Self-Assessment Questions and Exercises

1. Name any two chat servers.

2. Write short note on Messaging and chatting

3. Briefly explain about Telnet communication

3.13 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java

Programming, New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-

Hill, 2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach,

Firewall media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications,

2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998.

Basic Concepts Of Object

Oriented Programming

 NOTES

Self-Instructional Material

29

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

BLOCK 2

FUNDAMENTALS OF OBJECT

ORIENTED PROGRAMMING

UNIT – 4

BASIC CONCEPTS OF OBJECT

ORIENTED PROGRAMMING

Structure

4.1 Introduction

4.2 Objectives

4.3Basic concepts of OOP

4.4Benefits

4.5Applications

4.6 Check Your Progress Questions

4.7 Answers to Check Your Progress Questions

4.8 Summary

4.9 Key Words

4.10 Self Assessment Questions and Exercises

4.11 Further Readings

4.1 Introduction

Computer programs consists of two elements namely code and

data. A program can be organized around its code and data. There

are two paradigms that reveal how a program is constructed. They

are procedure oriented and Object oriented programming.

Procedure oriented programming basically consists of writing a list

of instructions for a computer to follow and organizing these

instructions into functions. Little emphasis is given to data. More

emphasis is on doing procedure. Larger programs are divided into

functions. These functions share global data. Data move openly

around the system from function to function. It uses top down

approach in program design. The procedural languages

BASIC,COBOL, FORTRAN and C adopt this approach. Object

Basic Concepts Of Object

 Oriented Programming

NOTES

Self-Instructional Material

30

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Oriented Programming is a new paradigm with various features such as

structured programming, reliability and data security. There are many

object oriented programming languages such as C++ and Java.

4.2 Objectives

After going through the unit you will be able to;

 Know the fundamentals of Object Oriented Programming (OOP)

 Understand the basic concepts of Object Oriented Programming

 Discuss about the applications of Java

 Know the advantages of Java Programming.

4.3Basic concepts / Principles of OOP

To manage the increasing complexity the object oriented programming

was conceived. This approach organizes a program around its data

called objects and a set of well defied interfaces to that data. OOP treats

data as a critical element in the program development and does not

allow it to flow freely around the system. It ties data more closely to

the functions that operate on it and protects it from accidental

modifications from outside function. OOP allows us to decompose a

problem into a number of entities called objects and then builds data

and functions around these entities. An OOP language such as C++ and

Java supports the OOP approaches.

Java is an object oriented programming and to understand the

functionality of OOP in Java, we first need to understand several

fundamentals related to objects. These include class, object, inheritance,

encapsulation, abstraction, polymorphism etc.

Data Abstraction

The process of abstraction in Java is used to hide certain details and

only show the essential features of the object.

Class

A class is a collection of data and methods that operate on that data. A

class is a template of an object. It is the central point of OOP and that

contains data and codes with behavior. In Java everything happens

Basic Concepts Of Object

Oriented Programming

 NOTES

Self-Instructional Material

31

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

within class and it describes a set of objects with common

behavior. The class definition describes all the properties,

behavior, and identity of objects present within that class.

Object

An Object is an Instance of a Class. Objects are created by

generating an instance of a class or in other words instantiating a

class. There can be more than one object for a particular class.

Objects are the basic unit of object orientation with behaviour,

identity. Figure 1.1 shows the representation of class and objects.

Figure 1.1 Class and its objects

Data Abstraction

Data abstraction defines the essential components (data members /

attributes / properties such as size, price supplier and methods /

membership function prototypes such as calculate()) excluding the

implementation of it. It defines only what is to be implemented but

excluding how. In object oriented programming class defines the

abstraction of data. The data members are sometimes called as

attributes or properties. Methods of a class are also called as

membership function or data members.

Data Encapsulation

Combining data and its function into a single unit is called Data

Encapsulation. Data encapsulation, sometimes referred to as data

hiding, is the mechanism whereby the implementation details of a

class are kept hidden from the user. This idea of hiding the details

away from the user and providing a restricted, clearly defined

interface is the underlying theme behind the concept of an abstract

data type.

Basic Concepts Of Object

 Oriented Programming

NOTES

Self-Instructional Material

32

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Inheritance

Inheritance is the process by which child object can get the properties of

parent object. In object-oriented programming, inheritance is a way to

form new classes (instances of which are called objects) using classes

that have already been defined. The new classes, known as derived

classes, take over (or inherit) attribute and behavior of the pre-existing

classes, which are referred to as base classes (or ancestor classes). It is

intended to help reuse existing code with little or no

modification.Figure 1.2 shows the process of inheritance.

Figure 1.2 Inheritance

There are various types of inheritance. They are single inheritance,

mulit-level inheritance, multiple inheritance and hybrid.

Polymorphism

The word polymorphism is Greek and literally means “many forms.”

Polymorphism is a term that describes a situation where one name may

refer to different methods. In java there are two type of polymorphism.

They are overloading type (compile time polymorphism) and overriding

type. (run time polymorphism). The figure 1.3 shows two types of

polymorphism.

Animal

Domestic

Dog Cat

Wild

Giraffee Lion

Basic Concepts Of Object

Oriented Programming

 NOTES

Self-Instructional Material

33

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Figure 1.3 Two types of Polymorphism

Overloading occurs when several methods have same names with

different method signature. Overloading is determined at the

compile time.Overriding occurs when a class method has the same

name and signature as a method in parent class.

A single function name area can be used to handle different

number and different type of arguments like area(a) for square

,area(b,h) for triangle and area(rad) for circle. When you override

methods, java determines the proper methods to call at the

program’s run time, not at the compile time. Figure 1.4 shows the

function overloading of area() method.

Figure 1.4 Function Overloading

Polymorphism

Compile Time

Function
Overloading

Operator
Overloading

Runtime

Virtual Function

Shape

Area()

Circle

Area(rad)

Square
Area(r)

Square
Area(b,h)

Basic Concepts Of Object

 Oriented Programming

NOTES

Self-Instructional Material

34

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Message Passing

Message Passing is another object oriented programming concept in

which one object can communicate with other objects. Objects can

communicate each other through message passing.

For example, Consumer and Producer relationship can be established

using message passing mechanism. In this example consumer and

producer are considered as two objects.

4.4Benefits

The Object oriented programming paradigm came into existence to

resolve the disadvantages of structured programming language

paradigms. The benefits of object oriented Programming includes;

 Reusability:Reusability of code can be achieved through

inheritance. By deriving a new class from the existing parent class

reusability can be achieved.

 Secure and Robust: The principles of data hiding help to write

a code to secure the data in various applications.

 Message Passing:These systems used to communicate between

one object with other objects.

 Flexibility:Through polymorphism flexibility in code can be

achieved using overloading and virtual function.

 Modularity: It is very easy partition the project into various sub

modules.

 Complexity:The complexity of the software is reduced.

 OOP systems can be upgrade into small to large scale systems.

 It is possible to create multiple objects of the same class

Basic Concepts Of Object

Oriented Programming

 NOTES

Self-Instructional Material

35

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

4.5Applications

Object oriented programming has featured many applications from

1960’s. Some of the applications of Object oriented Programming

for software developments are;

 Client Server systems : Object Oriented Programming is

used to develop client side (HTML, Javascript) and server

side (Servlets) programming.

 Real time system design: It is also used in real time

system design such as railway, on-line shopping (e-

commerce) and auction.

 Simulation and modeling system: Through object

oriented programming simulation and modeling can be

applied to map real world problems. Simula-67 and

Smalltalk are two object-oriented languages are designed

for making simulations.

 Databases : Objected oriented databases are nowadays

developed using object oriented languages

 Scripting : OOP has also been used for developing

HTML,XHTML and XML documents for the Internet.

Python, Ruby and Java are the scripting languages based on

object-oriented principles which are used for scripting.

 Graphics Applications : The development of games and

graphics software can be implemented using object

oriented programming languages.

Some other areas of applications include neural network,

Cloud/distributed systems, Embedded Systems, Libraries,

Operating systems, parallel programming system, browser

software, CAD/CAM systems and banking applications.

4.6 Check Your Progress Questions

1) Define Data Encapsulation.

2) What are the types of Polymorphism?

3) What are the concepts of OOPs?

Basic Concepts Of Object

 Oriented Programming

NOTES

Self-Instructional Material

36

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

4.7 Answers to Check Your Progress Questions

1. Mixing of data and its function into a single unit is called Data

Encapsulation.

2. Run-time polymorphism and Compile time polymorphism

3. Class,Objects, Data Abstraction, overloading, inheritance, data

hiding, polymorphism and message passing.

4.8 Summary

Java is an object oriented programming. The basic concepts of object

oriented Programming include class, objects, data abstraction,

overloading, inheritance, data hiding, polymorphism and message

passing. There are various benefits such as reusability, secure and

robust. Object oriented programming is used to develop various

applications such as real-time, embedded and cloud/distributed systems.

4.9 Key Words

 Class is a collection of data and methods that operate on that

data. A class is a template of an object.

 Object is an instance of a class.

4.10 Self Assessment Questions and Exercises

1. Explain in detail about the fundamental concept of Object

Oriented Programming.

2. Briefly explain about various applications of Java.

3. What are the benefits of Object Oriented Programming?

Explain.

4.11 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java

Programming, New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-

Hill, 2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How

to program, Pearson Education, 2000.

Basic Concepts Of Object

Oriented Programming

 NOTES

Self-Instructional Material

37

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

4. Naughton and H.Schildt, Java 2 - The complete reference,

Tata McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming,

O’Reilly Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach,

Firewall media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and

II, 5th Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer

Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998.

Java Evolution

NOTES

Self-Instructional Material

38

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

UNIT 5

JAVA EVOLUTION

Structure

5.1Introduction

5.2 Objectives

5.3Java Evolution

5.4Features

5.5How java differs from C and C++

5.6Java and internet

5.7Java support system

5.8Java environment

5.9 Check Your Progress Questions

5.10 Answers to Check Your Progress Questions

5.11 Summary

5.12 Key Words

5.13 Self-Assessment Questions and Exercises

5.14 Further Readings

5.1 Introduction

Java is a programming language derived from Oak language. It has

many features such as robust, secure and platform independent. It differs

from C and C++ in many ways. It also supports for internet

programming. It has special environment to work with console and

internet. This unit discuss about the evolution of java and its features.

5.2 Objectives

After going through the unit you will be able to;

 Understand Java Evolution

 List out the Features of Java

 Know How java differs from C and C++

 Learn about Java and internet

 Identify Java support system

 Discuss about Java environment

Java Evolution

 NOTES

Self-Instructional Material

39

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

5.3Java Evolution

The Java programming Language evolved from a language named

Oak. Oak was developed in the early nineties at Sun Microsystems

as a platform-independent language aimed at allowing

entertainment appliances such as video game consoles and VCRs

to communicate. Oak was first slated to appear in television set-

top boxes designed to provide video-on-demand services. As

Oak’s developers began to recognize this trend, their focus shifted

to the Internet and WebRunner, an Oak-enabled browser, was

born. Oak’s name was changed to Java and WebRunner became

the HotJava web browser.

5.4 Features of Java

Java has many features, where it follows object oriented

programming and platform independence, the features are,

1. Java is Interpreted: - Strictly speaking java is interpreted

although in reality java is both interpreted and compiled. A

programmer first compiles java source code into byte code

using java compiler. These byte codes are binary and

architecturally neutral(platform independent)

2. Java is platform independent and portable: - Java

programs can be executed easily from one type of

computer to another.

3. Java is Object Oriented: - Java is a true object oriented

language. Almost everything in java is an object. Java

comes with an extensive set of classes arranged in

packages that we can use in our programs by Inheritance.

4. Java is robust and secure: - It provides many safeguards

to ensure reliable code. Java incorporates the concept of

exception handling which captures serious errors and

eliminate the errors.

5. Java is distributed: - Java is designed as a distributed

language for creating applications on network. Java

application can open and access remote objects on Internet

as in a local system.

6. Java is familiar, simple and small: - Java does not use

pointers, pre processors header files, goto statement etc. It

also eliminates operator overloading and multiple

inheritance.

Java Evolution

NOTES

Self-Instructional Material

40

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

7. Java offers high performance:-Java architecture is designed to

reduce overheads during run time. The multi threading enhances

the execution speed of java program.

8. Java is dynamic and extensible: - Java is capable of

dynamically linking in new class methods and objects. Java

programs supports functions written in other languages such as C

and C++. Native methods are linked dynamically at run time.

5.5 How java differs from C and C++

The major difference between C and C++ is that C is a procedural

programming language and does not support classes and objects, while

C++ is a combination of both procedural and object oriented

programming language; therefore C++ can be called a hybrid language.

5.6 Java and internet

Java is strongly associated with the internet because of the first

application program is written in Java was hot Java.Web browsers are

used to run applets on the internet.

Internet users can use Java to create applet programs & run then locally

using a Java-enabled browser such as hot Java.Java applets have made

the internet a true extension of the storage system of the local computer.

 Java communicates with a web page through a special tag called .

 Java user sends a request for an HTML document to the remote

computers net browser.

 The web-browser is a program that accepts a request, processes the

request and sends the required documents.

 The HTML document is returned to that user browser.

 The document contains the applet tag which identifies the applet.

The corresponding applet is transferred to the user computer.

 The Java enabled browser on the user's computer interprets the byte

code and provide output.

5.7 Java support system

The term Java actual refers to more than just a particular language like C

or Pascal. Java encompasses several parts, including the following

A high level language

Java Evolution

 NOTES

Self-Instructional Material

41

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The Java language is a high level one that at a glance looks very

similar to C and C++ but offers many unique features of its own.

Java bytecode

A compiler, such s Sun's javac, transforms the Java language

source code to bytecode that runs in the JVM.

Java Virtual Machine (JVM)

A program, such as Sun's java, that runs on a given platform and

takes the byte code programs as input and interprets them just as if

it were a physical processor executing machine code. JVM is the

heart of java which is a virtual computer that resides in the

memory only. The JVM enables java programs to be executed on

various types of platforms. The JVM is the very reason that java is

portable. JVM provides a layer of abstraction between the

compiled java program and the underline hardware platform and

the OS.

5.8 Java environment

A compiler converts the java program into an intermediate

language representation called BYTECODE which is platform

independent. A java file will have the extension .java. For example

Hello.java. When this file is compiled we get a file called

Hello.class.

This class file is run using an interpreter as and when necessary.

 class Hello1

{

 public static void main(String args[])

{

 system.out.println(“Hello java world”);

 }

}

The steps for compiling and running java program are as follows;

C:\java> javac Hello1.java

C:\java> java Hello1

Hello java world.

Java Evolution

NOTES

Self-Instructional Material

42

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

The following figure 5.1 shows the architecture of java execution

environment.

Figure 5.1 shows the java execution architecture

The concept of “Write Once, run anywhere” is possible in java. The

java program can be compiled on any platform having a java compiler.

The resulting byte-codes can be then run on any operating system on

any machine like windows, Unix etc.. The above diagram illustrate how

does it work.

Downloading and Installing Java on Windows:

1. Download the latest Version of Java SDK and install on your system.

2. Accept all of the defaults and suggestions, but make sure that the

location where Java will be installed is at the top level of your C: drive.

Click on "Finish." You should have a directory (folder) named

C:\j2sdk1.5.0_04, with subfolders C:\j2sdk1.5.0_04\bin and

C:\j2sdk1.5.0_04\lib

3. Modify your system variable called "PATH" (so that programs can

find where Java is located).To does this for Windows 2000 or XP, either

right-click on the My Computer icon or select "System" on the control

panel. When the window titled "System Properties" appears, choose the

Java Evolution

 NOTES

Self-Instructional Material

43

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

tab at the top named "Advanced." Then, click on "Environment

Variables." In the bottom window that shows system variables,

select "Path" and then click on "Edit..." Add C:\j2sdk1.5.0_04\bin

as the first item in the list. Note that all items are separated by a

semicolon, with no spaces around the semicolon. You should end

up with a path variable that looks something like

C:\j2sdk1.5.0_04\bin;C:\WINNT\system32;C:\WINNT;C:\WINN

T\system32\Wbem

For Windows 98 or ME, open the file AUTOEXEC.BAT in

Notepad. You should find a line in this file that begins SET

PATH=...Modify this line to add C:\j2sdk1.5.0_04\bin;

immediately after the equals sign.

4. Modify or create a system variable called "CLASSPATH," as

follows. In the lower "System Variables" pane choose "New..."

and type in Variable Name "CLASSPATH" and value (note that it

begins with dot semicolon) .;C:\j2sdk1.5.0_04\lib

5. To test Java to see if everything is installed properly, open a

command window (a DOS window) and type the command

"javac" The result should be information about the Usage of javac

and its options. If you get a result that "'javac' is not recognized as

an internal or external command, operable program or batch file"

then there is a problem and Java will not work correctly.

Note:

The name of the file and the name of the class must be same. The

names are also case sensitive. It is a common practice to use a

capital letter at the beginning of the name for a class.

5.9 Check Your Progress Questions

1. What do you meant by platform independent?

2. Is Java is capable of dynamically linking? Justify

3. What do you meant by byte code in java?

Java Evolution

NOTES

Self-Instructional Material

44

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

5.10 Answers to Check Your Progress Questions

1. Java programs can be executed easily from one type of computer

to another.

2. Java is capable of dynamically linking in new class methods and

objects. Java programs supports functions written in other

languages such as C and C++. Native methods are linked

dynamically at run time.

3. A compiler converts the java program into an intermediate

language representation called BYTECODE which is platform

independent.

5.11 Summary

The Java programming Language evolved from a language named

Oak.Java has many features, where it follows object oriented

programming and platform independence

5.12 Key Words

 Platform Independent -Java programs can be executed easily

from one type of computer to another.

 Bytecode - A compiler converts the java program into an

intermediate language representation called bytecode which is

platform independent.

5.13 Self-Assessment Questions and Exercises

1. Explain in detail about the features of java programming.

2. Elucidate about the java working environment.

3. Briefly explain about java support system.

4. How java differs from C++?

5.14 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java

Programming, New Age International Publishers, 2004

Java Evolution

 NOTES

Self-Instructional Material

45

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

2. Programming with Java, 4e, E. Balagurusamy, Tata

McGraw-Hill, 2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web –

How to program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference,

Tata McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming,

O’Reilly Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach,

Firewall media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and

II, 5th Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer

Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998.

Overview of Java language

NOTES

Self-Instructional Material

46

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

UNIT 6

OVERVIEW OF JAVA LANGUAGE

Structure

6.1 Introduction

6.2 Objectives

6.3 Overview of Java

6.4Constants variables and data types

6.5Operators and Expressions

6.6Decision Making and Branching

6.7Looping

6.8 Check Your Progress Questions

6.9 Answers to Check Your Progress Questions

6.10 Summary

6.11 Key Words

6.12 Self-Assessment Questions and Exercises

6.13 Further Readings

6.1 Introduction

The Java programming Language evolved from a language named

Oak. Oak was developed in the early nineties at Sun Microsystems

as a platform-independent language aimed at allowing entertainment

appliances such as video game consoles and VCRs to communicate.

6.2 Objectives

After going through the unit you will be able to;

1. To understand the fundamentals of java programming.

2. To learn about Constants, variables and various data types.

3. To know about Operators and expressions in java

4. To discuss about various branching and Looping structure for

decision making.

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

47

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

6.3 Overview of Java

Java was started by JAMES GOSLING team at SUN

MICROSYSTEMS INC. in 1991. The main purpose of java is

embedded systems like electronic devices like microwave oven,

remote control system. Java was emerging to play a role in the

administration of Internet.The popularity and the richness of the

Java language is the set of packages that come bundled with Java

Developer Kit (JDK).

Example:-

java.applet- for developing applets

interface

The term Java actual refers to more than just a particular language

like C or Pascal. Java encompasses several parts, including the

following

A high level language

The Java language is a high level one that at a glance looks very

similar to C and C++ but offers many unique features of its own.

Java bytecode

A compiler, such s Sun's javac, transforms the Java language source

code to bytecode that runs in the JVM.

Java Virtual Machine (JVM)

A program, such as Sun's java, that runs on a given platform and

takes the byte code programs as input and interprets them just as if

it were a physical processor executing machine code. JVM is the

heart of java which is a virtual computer that resides in the memory

only. The JVM enables java programs to be executed on various

types of platforms. The JVM is the very reason that java is portable.

JVM provides a layer of abstraction between the compiled java

program and the underline hardware platform and the OS.

Overview of Java language

NOTES

Self-Instructional Material

48

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

6.4 Constants, Variables and data types

Constants

Constants are identifiers with values that can't be changed. The value

is assigned to a constant when it is declared.

 Integer Constants - 0 to n

 Floating point Constants - 3.14

 Boolean Constants - 0, 1, true, false

 Character Constants - characters, alphanumeric, escape

sequences

 String Constants - “HELLO WORLD”

Variables

Variables are places in the computer's memory where you store the

data for a program. Each variable is given a unique name which you

refer to it with.

Declaring variables

You can declare a variable either inside the class curly brackets or

inside the main method's curly brackets. You declare a variable by

first saying which type it must be and then saying what its name is.

A variable name can only include any letter of the alphabet, numbers

and underscores. Spaces are not allowed in variable names. You

usually start a variable name with a lower case letter and every first

letter of words that make up the name must be upper case. for

Example,

public class VariablesExample{

 public static void main(String[] args)

 {

 int var1;

 }

}

If you want to declare more than one variable of the same type you

must separate the names with a comma.

public class VariablesExample

{

 public static void main(String[] args)

 {

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

49

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

 int var1,var2;

 }

}

Scope of variables

Variables can be defined within any block. A block defines a scope.

Each time you start a new block you are creating a new scope. A

scope ultimately determines what objects visible to other parts of

the program.

Three types of variables in java:-

1. Instance variables

2. class (or) static variables

3. local variables

1.Instance variables:-

Instance and class variables are declared inside a class. They are

created when the objects are instantiated and therefore they are

associated with close objects.

2. Class (or) static variables:-

Class variables are global to a class and belong to an entire set of

objects that the class creates. Only one location is created for each

class variable. If an object changes value of a static data member

then the changed value is available for all other objects of that

class.

3. Local variables:-

Variables declared and used inside methods are called local

variables because they are not available for use outside the method

definition Local variables can also be declared inside program

blocks. When the program control leaves a block all the variables in

the block will cease to exist.

Data Types

There are 8 primitive data types. The 8 primitive data types are

numeric types. The names of the eight primitive data types are

byte,short,int,long,float,double,char and boolean.

Overview of Java language

NOTES

Self-Instructional Material

50

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Type Values Size Default

Byte signed integers 8 bits 0

Short signed integers 16 bits 0

Int signed integers 32 bits 0

Long signed integers 64 bits 0l

Float IEEE 754 floating

point

32 bits 0.0f

Double IEEE 754 floating

point

64 bits 0.0d

Char Unicode character 16 bits \u0000

Boolean true,false 1 bit used in 32 bit

integer

false

Example

public class main1

{

 public static void main(String[] args)

{

 int days = 468;

 System.out.println("Days Passed: "+days);

 }

}

6.5 Operators and Expressions

There are eight types of operators in java. They are Assignment

operators, Arithmetic operators, Increment / Decrement operators,

Relational operators, Conditional operators, Bitwise operators

,Boolean operators, and Special operators.

Assignment Operators

The basic assignment operator = is used to assign a value to a

variable or initialize a variable. The following assignment operations

can be performed in java.

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

51

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Arithmetic Operators

The following arithmetic operations can be performed in java.

Assignment Operators

x operation= y

is equivalent to

x = x operation y

x and y must be numeric or char types except for "=", which

allows x and y also to be object references. In this case, x must

be of the same type of class or interface as y. If mixed floating-

point and integer types, the rules for mixed types in expressions

apply.

=

Assignment operator.

 x = y;

y is evaluated and x set to this value.

The value of x is then returned.

+=, -=, *=, /=, %=

Arithmetic operation and then assignment,

e.g.

 x += y;

is equivalent to

 x = x + y;

&=, |=, ^=

Bitwise operation and then assignment, e.g.

 x &= y;

is equivalent to

 x = x & y;

<<=, >>=, >>>=

Shift operations and then assignment, e.g.

 x <<= n;

is equivalent to

 x = x << n;

Overview of Java language

NOTES

Self-Instructional Material

52

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Arithmetic Operators
x and y are numeric or char types. If mixed floating-point and integer

types, then floating-point arithmetic used and a floating-point value

returned. If mixed integer types, the wider type is returned. If double and

float mixed, double is returned.

 x + y Addition

 x - y Subtraction

 x * y Multiplication

 x / y Division.

 x % y
Modulo - remainder of x/y returned.

 -x
Unary minus

Negation of x value

Example to add two numbers:

/* program to add two numbers */

class addnum{

 public static void main(String args[]){

 int a =10;

 int b = 20;

 int sum;

sum = a+b;

System.out.println(“sum=”sum);

}

}

Compiling and Executing the above program is :

C:\java>javac addnum.java

C:\java>java addnum

sum = 30

Increment & Decrement operators

These operators are placed either before the variable or after the

variable name.

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

53

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

The example below shows the use of these operators.

/*Program using increment and decrement operators */

Class InDecOpr{

public static void main(String args[]){

 int x1=5;

 int x2=5;

 int y1,y2;

 y1=x++;

 System.out.println(“x1= ‘+x1+” y1=”+y1);

y2=++x2;

 System.out.println(“x2= ‘+x2+” y2=”+y2);}

}

C:\java> javac IncDecopr.java

C:\java> java IncDecopr

 x1 = 6 y1= 5

x2 =6 y2=6

rement & Decrement operators

x and y are numeric (FP & integer) or char types.

 x++ Post-increment : add 1 to the value.

The value is returned before the increment is made, e.g.

 x = 1;

 y = x++;

Then y will hold 1 and x will hold 2

 x-- Post-decrement : subtract 1 from the value.

The value is returned before the decrement is made, e.g. :

 x = 1;

 y = x--;

Then y will hold 1 and x will hold 0.

 ++x Pre-increment : add 1 to the value.

The value is returned after the increment is made, e.g.

 x = 1;

 y = ++x;

Then y will hold 2 and x will hold 2.

 --x Pre-decrement : subtract 1 from the value.

The value is returned after the decrement is made, e.g.

 x = 1;

 y = --x;

Then y will hold 0 and x will hold 0.

Overview of Java language

NOTES

Self-Instructional Material

54

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Relational Operators

 The following Boolean operations can be performed in java.

Relational Operators

x and y are numeric or char types only except for "==" and "!="

operators, which can also compare references. If mixed types, then

the narrower type converted to wider type. Returned value is boolean

true or false.

x < y Is x less than y ?

x <= y Is x less than or equal to y ?

x > y Is x greater than y ?

x >= y Is x greater than or equal to y ?

x == y Is x equal to y ?

x != y Is x not equal to y ?

The example below prints larges of two numbers

/* program to find the largest of two numbers */

class largest

{

public static void main(String args[])

{

int x1=10;

int x2=20;

if(x1>x2)

 System.out.println(“x1 is larger than x2”);

Else System.out.println(“x2 is larger than x1”);

}}

Conditional /Ternary Operator

 The following Conditional operations can be performed in java.

Conditional /Ternary Operator

 x=Boolean?y:x Conditional

Operator

The first operand - boolean - is a

boolean variable or expression.

First this boolean operand is

evaluated. If it is true then the second

operator evaluated and x is set to that

value.

If the boolean operator is false, then

the third operand is evaluated and x is

set to that value.

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

55

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Bitwise Operators

A bitwise operator allows you to perform bit manipulation on data.

The following Bitwise operations can be performed in java.

Bitwise Operators

x and y are integers. If mixed integer types, such as int and long,

the result will be of the wider type

 ~x Compliment Flip each bit, ones to zeros, zeros

to ones

 X & y AND AND each bit a with corresponding

bit in b

 X | y OR OR each bit in a with

corresponding bit in b

 X ^ y XOR XOR each bit in x with

corresponding bit in y

 X << y Shift left Shift x to the left by y bits. High

order bits lost.Zero bits fill in right

bits.

 X >> y Shift Right -

Signed

Shift x to the right by y bits. Low

order bits lost.

Same bit value as sign (0 for

positive numbers, 1 for negative)

fills in the left bits.

 X >>> y Shift Right -

Unsigned

Shift x to the right by y bits. Low

order bits lost.

Zeros fill in left bits regardless of

sign.

The following example shows subtraction using one’s complement

operation.

class sub

{

public static void main(String args[])

{

 int x1=25;

 int x2=20;

int temp,result;

//To find one’s complement

temp =~x2;

//To find two’s complement

Overview of Java language

NOTES

Self-Instructional Material

56

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

temp=temp+1;

result = x1+temp;

System.out.println(“x1-x2=”+result);

Sytem.out.println(“x1=x2=”+result);

}

}

Boolean Operators

The following Boolean operations can be performed in java.

Boolean Operators
x and y are boolean types. x and y can be expressions that result in a

boolean value . Result is a boolean true or false value.

 X && y (short

circuit)

Conditional

AND

If both x and y are true, result is true.

If either x or y are false, the result is

false

If x is false, y is not evaluated.

 X & y Boolean

AND

If both x and y are true, the result is

true.

If either x or y are false, the result is

false

Both x and y are evaluated before the

test.

 X || y (short

circuit)

Conditional

OR

If either x or y are true, the result is

true.

If x is true, y is not evaluated.

 X | y Boolean

OR

If either x or y are true, the result is

true.

Both x & y are evaluated before the

test.

 !x Boolean

NOT

If x is true, the result is false.

If x is false, the result is true.

 X ^ y Boolean

XOR

If x is true and y is false, the result is

true.

If x is false and y is true, the result is

true.

Otherwise, the result is false.

Both x and y are evaluated before the

test.

Class and Object Operators

The following class and object operations can be performed in java.

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

57

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Class and Object (Special) Operators

x instanceof

c

Class Test

Operator

The first operand must be an

object reference.

c is the name of a class or

interface.

If x is an instance of type c

or a subclass of c, then true

returned.

If x is an instance of

interface type c or a sub-

interface, then true is

returned.

Otherwise, false is returned.

 new c(args) Class

Instantiation

Create an instance of class c using

constructor c(args)

"." Class Member

Access

Access a method or field of a class

or object :

 o.f - field access for object o

 o.m() - method access for object o

Operator Precedence

When more than one operator is used in an expression, java has

established operator precedence to determine the order in which the

operators are evaluated. For example, consider the following

example, Cal = 10 + 3 * 2 – 12 / 4.In this expression

multiplication and division operation have higher priority than

addition and multiplication. Hence they are performed first. After

that the right hand side becomes 10 + 6 – 3

Overview of Java language

NOTES

Self-Instructional Material

58

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Operator Associatively
The following operators have Right to Left associatively. All other

operators (see precedence table above) are evaluated left to right.

=

*=

/=

%=

+=

-=

<<=

>>=

>>>=

&=

^=

|=

?:

new

(type cast)

++x

--x

+x

-x

~

!

Operator Precedence

The larger the number, the higher the precedence.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=

*=

/=

%=

+=

-=

<<=

>>=

>>>=

&=

^=

|=

?: || && | ^ & ==

!=

<

<=

>

>=

<<

>>

>>>

+

-

*

/

%

new

(type)

++x

--x

+x

-x

~

!

.

[]

(args)

x++

x--

http://www.particle.kth.se/~lindsey/JavaCourse/Book/Part1/Java/Chapter02/operators.html#Precedence#Precedence

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

59

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

6.6 Decision Making and Branching

Decision making and branching are needed for the user to execute a

set of statements repeatedly for a specific number of times or till a

particular condition is satisfied. Also the sequence of execution

need to be altered depending of the logic of the Program.

For example, it may be required to find the area of the triangle for

many values of the sides. To perform these tasks, the control

statements come in handy.

Conditional Control (Branching) Statements

The conditional control statement can be broadly classified as

follows:

i) Conditional Execution

ii) Selection

iii) Transfer statements

iv) Looping

i) Conditional Execution (if – else statement)

The ‘if-else’ statement is used for conditional statement. This

statement executes on a logical test and performs one of the two

possible actions depending on the result of the test. If the result is

true then the statements in the ‘if’ construct are executed, other

wise the statements in the ‘else’ construct are executed.

The general form of ‘if-else’ is given below:

General format 1 :

if (condition) {

statements;

}

General format 2 :

if (condition) {

statements;

}

else {

statements;

}

Overview of Java language

NOTES

Self-Instructional Material

60

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Example:

class IfElseDemo {

 public static void main(String[] args) {

 int testscore = 76;

 char grade;

 if (testscore >= 90) {

 grade = 'A';

 } else if (testscore >= 80) {

 grade = 'B';

 } else if (testscore >= 70) {

 grade = 'C';

 } else if (testscore >= 60) {

 grade = 'D';

 } else {

 grade = 'F';

 }

 System.out.println("Grade = " + grade);

 }

}

The output from the program is: .

 Grade = C

You may have noticed that the value of testscore can satisfy more

than one expression in the compound statement: 76 >= 70 and 76 >=

60. However, once a condition is satisfied, the appropriate

statements are executed (grade = 'C';) and the remaining conditions

are not evaluated.

Nested if statement

The conditional if-else statement can be used one within the other

and these statements are said to be nested. The general form is as

follows :

 if (condition 1){

 if(condition 2)

 {

 Statements

 }

 else

 {

 Statements

 }

}

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

61

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

 else{

if(condition 3)

 {

 Statements

 }

 else{

 Statements

 }

 }

Example

if (length < 10)

 {

System.out.println("Small");

 }

 else {

 if (length < 20)

 {

System.out.println("Medium");

 }

else

 {

System.out.println("Large");

 }

}

Selection (Switch statement)

Selection statement allows the user to select a particular group of

statements from several groups. The switch statement is used for

this purpose.

The switch statement is an extension of if-else statement. In this

case of an if-else statement, the maximum number of branches is

restricted to 2, whereas with the help of switch statement you can

have more number of branches,

Syntax :

switch (expression)

{

case 1:

 code block1

 case 2:

 code block2

http://www.site.uottawa.ca/~tcl/factguru1/java/System.html
http://www.site.uottawa.ca/~tcl/factguru1/java/println.html
http://www.site.uottawa.ca/~tcl/factguru1/java/System.html
http://www.site.uottawa.ca/~tcl/factguru1/java/println.html
http://www.site.uottawa.ca/~tcl/factguru1/java/System.html
http://www.site.uottawa.ca/~tcl/factguru1/java/println.html

Overview of Java language

NOTES

Self-Instructional Material

62

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 .

 .

 .

 default:

 code default;

}

The expression to the switch must be of a type byte, short, char, or

int. Then there is a code block following the switch statement that

comprises of multiple case statements and an optional default

statement.

The execution of the switch statement takes place by comparing the

value of the expression with each of the constants. The comparison

of the values of the expression with each of the constants occurs

after the case statements. Otherwise, the statements after the default

statement will be executed.

Now, to terminate a statement following a switch statement uses

break statement within the code block. However, it is an optional

statement. The break statement is used to make the computer jump to

the end of the switch statement. Remember, if we won't use break

statement the computer will go ahead to execute the statements

associated with the next case after executing the first statement.

For example

/*Displays the name of the day, based on the value of week

class switchex

{

 public static void main(String[] args)

{

 int week = 5;

 switch (week){

 case 1: System.out.println("monday"); break;

 case 2: System.out.println("tuesday"); break;

 case 3: System.out.println("wednesday"); break;

 case 4: System.out.println("thursday"); break;

 case 5: System.out.println("friday"); break;

 case 6: System.out.println("saturday"); break;

 case 7: System.out.println("sunday"); break;

 default: System.out.println("Invalid week");break;

 } }}

Output :

C:\javac> javac switch.java

C:\javac>java switch Friday

http://www.roseindia.net/java/master-java/switch-statement.shtml

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

63

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

In this case, “friday” is printed to standard output.

Transfer Statements

Sometimes we use Jumping Statements in Java. Using for, while

and do-while loops is not always the right idea to use because they

are cumbersome to read. Using jumping statements like break and

continue it is easier to jump out of loops to control other areas of

program flow.

break statement

break statement is used to terminate the loop once the condition is

satisfied..

Syntax: break;

Example:

class BreakDemo

{

 public static void main(String[] args)

{

 for (int i = 0; i < 5; i++) {

 System.out.println(i);

 if (i==3) {

 break ;

 }

 }

 }

}

Output :

BreakDemo

0

1

2

 3

continue statement

Continue statement is just similar to the break statement in the way

that a break statement is used to pass program control immediately

after the end of a loop and the continue statement is used to force

program control back to the top of a loop. The continue statement

skips the current iteration of a for, while, or do-while loop. Lets see

http://www.roseindia.net/java/master-java/break.shtml

Overview of Java language

NOTES

Self-Instructional Material

64

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

the same example of break statement but here we will use continue

instead of break.

Syntax : continue;

Example:

class continueState

{

public static void main(String[] args)

{

 for (int i = 0; i < 5; i++) {

 System.out.println(i);

 if (i==3) {

 continue ; } }} }

Output :

0

1

2

3

4

return statements:

It is a special branching statement that transfers the control to the

caller of the method. This statement is used to return a value to the

caller method and terminates execution of method. This has two

forms: one that returns a value and the other that cannot return. The

returned value type must match the return type of method.

Syntax:

 return;

 return values;

Example:

public static void demo()

{

 System.out.println(“welcome”+welcome());

}

static String welcome()

{

 return “java world”;

}

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

65

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

Output : welcome java world

6.7 Looping Statements

There may be situations in a problem where a single statement or

group of statements may have to be executed repeatedly, until a

particular condition is satisfied. The following various looping

statements are available in Java.

i) while statement

ii) do – while statement

iii) for statement

i) while statement

The ‘while’ statement continually executes a block of statements

when a particular condition is true. Its syntax can be expressed as:

while (conditional expression) {

 statement(s)

}

The while statement evaluates expression, which must return a

boolean value. If the expression evaluates to true, the while

statement executes the statement(s) in the while block. The while

statement continues testing the expression and executing its block

until the expression evaluates to false.

Example : Using the while statement to print the values from 1

through 5 can be accomplished as in the following program:

/* To illustrate while statement

class WhileDemocode

 {

 public static void main(String[] args)

{

 int count = 1;

 while (count < 6) {

 System.out.println("Count is: " + count);

 count++;

 }

 }

}

Overview of Java language

NOTES

Self-Instructional Material

66

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The output of this program is:

Count is : 1

Count is : 2

Count is : 3

Count is : 4

Count is : 5

ii) do - while statement

The Java programming language also provides a do-while statement,

which can be expressed as follows:

do {

 statement(s)

} while (conditional expression);

The difference between do-while and while is that do-while

evaluates its expression at the bottom of the loop instead of the top.

Therefore, the statements within the do block are always executed at

least once, as shown in the following Program:

Example

class DoWhileDemo

 {

 public static void main(String[] args)

{

 int count = 1;

 do {

 System.out.println("Count is: " + count);

 count++;

 } while (count <= 6);

 }

}

The output of this program is:

Count is : 1

Count is : 2

Count is : 3

Count is : 4

Count is : 5

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

67

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

iii) for statement

The for loop is the most versatile loop provided in java language. It

accepts an initial condition and continues to loop until the condition

is specified in the loop is met. In for loop, the initial value,

increment value and the condition are specified in single statement.

This reduces ambiguity and increases the readability of the

program.

The general form of the for statement can be expressed as follows:

for (initialization; termination; increment)

{

statement(s)

}

When using this version of the for statement, keep in mind that:

 The initialization expression initializes the loop; it's

executed once, as the loop begins.

 When the termination expression evaluates to false, the loop

terminates.

 The increment expression is invoked after each iteration

through the loop; it is perfectly acceptable for this

expression to increment or decrement a value.

The following program is an example to print the numbers 1

through 5 to standard output:

class ForDemo

{

 public static void main(String[] args)

{

 for(int i=1; i<6; i++)

{

 System.out.println("Count is: " + i);

 }

 }}

The output of this program is:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Overview of Java language

NOTES

Self-Instructional Material

68

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Nested Loops

The placing of one loop inside the body of another loop is called

nesting. When you "nest" two loops, the outer loop takes control of

the number of complete repetitions of the inner loop. While all types

of loops may be nested, the most commonly nested loops are for

loops.The following are the rules to be followed while implementing

the nested for – loops

i) Each for the loops should have a unique index

variable and should not coincide with the other index

variables

ii) The loops should not overlap each other.

iii) The loops should be completely embedded with each

other.

For example :

System.out.println(“num2 "+” “+ " num1”);

for(num2 = 0; num2 <= 3; num2++)

{

 for(num1 = 0; num1 <= 2; num1++)

 {

 System.out.println(num2 + " " + num1);

 }

}

Output

num2 num1

0 0

0 1

0 2

1 0

1 1

1 2

2 0

2 1

2 2

3 0

3 1

3 2

Overview Of Java Language

NOTES

 NOTES

Self-Instructional Material

69

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

6.8 Check Your Progress Questions

1. What do you meant by scope of variables?

2. What is the purpose of continue statement?

6.9 Answers to Check Your Progress Questions

1) Variables can be defined within any block. A block defines

a scope. Each time you start a new block you are creating a

new scope. A scope ultimately determines what objects

visible to other parts of the program.

2) Continue statement is just similar to the break statement in

the way that a break statement is used to pass program

control immediately after the end of a loop and the continue

statement is used to force program control back to the top of

a loop.

6.10 Summary

Java was started by JAMES GOSLING team at SUN

MICROSYSTEMS INC. in 1991. The main purpose of java is

embedded systems like electronic devices like microwave oven,

remote control system. Java was emerging to play a role in the

administration of Internet.

There are eight types of operators in java. They are Assignment

operators, Arithmetic operators, Increment / Decrement operators,

Relational operators, Conditional operators, Bitwise operators

,Boolean operators, and Special operators.

Decision making and branching are needed for the user to execute a

set of statements repeatedly for a specific number of times or till a

particular condition is satisfied.

6.11 Key Words

 Constants are identifiers with values that can't be changed.

The value is assigned to a constant when it is declared.

Overview of Java language

NOTES

Self-Instructional Material

70

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 Variables are places in the computer's memory where you

store the data for a program. Each variable is given a unique

name which you refer to it with.

6.12 Self-Assessment Questions and Exercises

1. Differentiate between continue and break statements

2. Differentiate between while and for looping statements

3. Briefly explain about nested loops and nested if structure.

6.13 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java

Programming, New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata

McGraw-Hill, 2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web –

How to program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference,

Tata McGraw-Hill, Fourth dition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach,

Firewall media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II,

5th Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications,

2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998

 Class, objects and methods

NOTES

Self-Instructional Material

71

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

BLOCK 3

CLASSES, OBJECTS AND METHODS

UNIT 7CLASS

Structure

7.1 Introduction

7.2 Objectives

7.3Defining a class and fields / methods

7.4Creating objects – accessing class members

7.5 Constructors

7.6Method overloading

7.7Static members

7.8 Nesting of methods

7.9Inheritance

7.10overriding methods

7.11 Final variables-classes –methods

7.12 Check Your Progress Questions

7.13 Answers to Check Your Progress Questions

7.14 Summary

7.15 Key Words

7.16 Self-Assessment Questions and Exercises

7.17 Further Readings

7.1 Introduction

In object oriented programming class, object and methods play vital role.

Class defines the structure of an object. Class consist of data member are

membership functions. You can have any number of objects for a

particular class. Class members can be accessed use class member access

operator.

7.2 Objectives

After going through the unit you will be able to;

 To understand about class, objects, fields and methods

 To know about the inheritance and its types.

Classes, Objects and mmethods

NOTES

Self-Instructional Material

72

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 To discuss about constructors

 To learn about method overloading and method overriding

 To understand the nesting of methods and final

7.3Defining a class, fields and methods

A class is a collection of data and methods that operate on that data. A class

is a template of an object. Class is a keyword.

Defining Class and fields

It has the following parts.

• Class Definition

• Creating instance and class variables

• Method definitions

General Format :

 class classname

{

 access datatype instance variable1;

 access datatype instance variable2;

 …..

 ……

 access datatype instance variableN;

 access returntype methodname1(arguments list);

 access returntype methodname2(arguments list2);

 …..

 …..

 access returntype methodnameN(arguments listN);

 }

Where access is access specified like public, private, default and protected

Example :

public class Circle

{

 public double x, y; // The coordinates of the center

 public double r; // The radius

 // Methods that return the circumference and area of the circle

 public double circumference()

 Class, objects and methods

NOTES

Self-Instructional Material

73

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 { return 2 * 3.14159 * r; }

 public double area()

 { return 3.14159 * r*r; }

}

Defining Methods

Methods can be defined inside a class. The methods contains the

following parts,

• return type

• Name of the method

• A list of arguments

• Body of the method

General format:

 access returntype methodname1(arguments list);

 Where access is access specifier like public,private,default and

protected.

Example

 void display()

{

 System.out.println(“message”);

 }

7.4Creating objects and accessing class members

An Object is an Instance of a Class. Objects are created by generating an

instance of a class or in other words instantiating a class. There can be

more than one object for a particular class.

Example :

 Circle c;

 c = new Circle();

 or

 Circle c = new Circle();

 Circle c1 = new Circle();

Classes, Objects and mmethods

NOTES

Self-Instructional Material

74

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

Now you have created an instance of our Circle class In this new is the java

Operator that creates the object.

Accessing Object Data

Now that we've created an object, you can use its data fields.

Circle c = new Circle();

c.x = 2.0; // Initialize our circle to have center (2, 2) and radius 1.0.

c.y = 2.0;

c.r = 1.0;

Using Object Methods

This is where things get interesting! To access the methods of an object, you

use the same syntax as accessing the data of an object:

Circle c = new Circle();

double a;

c.r = 2.5;

a = c.area();

Take a look at that last line. We did not say:

 a = area(c);

We said:

 a = c.area();

7.5Constructors

Constructor is a special function used to initialize the objects.Every class has

at least one its own constructor. Constructor creates an instance for the class.

Constructor initiates (initialize) something related to the class's methods.

 Constructor is the method which name is same to the class.

 Constructors are invoked automatically when an object is created.

 Constructor methods do not have any return type.

 Typically they are used to set initial values to instance variables.

Example

class another

{

 int x,y;

 another(){ }

 int area()

{

 int ar = x*y;

 return(ar); }

}

public class Construct{

 Class, objects and methods

NOTES

Self-Instructional Material

75

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 public static void main(String[] args){

 another b = new another();

 b.x = 2;

 b.y = 3;

 System.out.println("Area of rectangle : " + b.area());

 System.out.println("Value of y in another class : " + b.y);

 }

}

Parameterized Constructors:

Similar to the methods Constructors also can have parameters. for

example

class another{

 int x,y;

 another(int a, int b)

{

 x = a; y = b; }

int area(){

 int ar = x*y; return(ar); }

}

public class Construct

{

 public static void main(String[] args) {

 another a = new another(1,1);

 System.out.println("Area of rectangle : " + a.area());

 System.out.println("Value of x in another class : " + a.x);

}}

Constructor Overloading

You can have more then one constructor for a particular class. But the

number or type of arguments has to be different.In this example you will

see that how to implement the constructor feature in a class. This program

is using two classes. First class is another and second is the main class

which name is Construct. In the Construct class two objects (a and b) are

created by using the overloaded another Constructor by passing different

arguments and calculated. The area of the different rectangles is

calculated by passing different values to the constructor.

Example

class another

Classes, Objects and mmethods

NOTES

Self-Instructional Material

76

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 {

 int x,y;

 another(int a, int b)

 {

 x = a;

 y = b;

 }

 another()

 {

 }

 int area()

 {

 int ar = x*y;

 return(ar);

 }

}

public class Construct

{

 public static void main(String[] args)

 {

 another b = new another();

 b.x = 2;

 b.y = 3;

 System.out.println("Area of rectangle : " + b.area());

 System.out.println("Value of y in another class : " + b.y);

 another a = new another(1,1);

 System.out.println("Area of rectangle : " + a.area());

 System.out.println("Value of x in another class : " + a.x);

 }

}

A Constructor which doesn’t take any arguments is called as default

constructor. Default constructors are automatically provided by java.

7.6Methods overloading

You can have same name for more than one method. The number of

arguments and / or they type of arguments are to be different for creating

two or more methods with the same name. The return types of the methods

can be different as long as the parameter is different

 Class, objects and methods

NOTES

Self-Instructional Material

77

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

The following example below shows overloading of a method call as add.

The first add() takes integers as arguments and returns the sum of a

floating point number. The second add() takes floating point numbers as

parameters and returns the sum as a floating point number. The third

add() method takes string as arguments, and converts them to integer and

then returns sum as flowing point number.

 // Program to illustrate Overloading

 class overloadingmethod

{

 static float add(int x , int y)

{

 return x+y;

 }

 static float add(float t1,float t2)

{

 return t1+t2;

 }

 static float add(String s1,String s2)

{

 float sum;

 sum=Integer.parseInt(s1)+Integer.parseInt(s2);

 return sum;

 }

 public static void main(String args[])

 {

 int x = 100; int y=200;

 float m =15.5f;

 float n = 10.5f;

 String s1="125";

 String s2="145";

 System.out.println(add(x,y));

 System.out.println(add(m,n));

 System.out.println(add(s1,s2));

 }

 }

Output:

300.0

26.0

270.0

Classes, Objects and mmethods

NOTES

Self-Instructional Material

78

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

7.7Static Methods and Members

A static method can be accessed without creating an instance of the class. If

you try to use a non-static method and variable defined in this class then the

compiler will say that non-static variable or method cannot be referenced

from a static context.

Note :

Static method can call only other static methods and static variables defined

in the class.

The this keyword can't be used in a static methods.

Example

 public class staticmethodex

{

 int i;

 static int j;

 public static void staticMethod()

{

 System.out.println("you can access a static method this way");

}

 public void nonStaticMethod()

{

 i=100;

 j=1000;

 System.out.println("non static method—cannot be called");

}

 public static void main(String[] args)

{

 //i=10;

 j=100;

 //non static methods cannot be called without instance

 //nonStaticMethod();

 staticMethod();// called without instance

 }

}

 Class, objects and methods

NOTES

Self-Instructional Material

79

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

7.8Nesting of methods

A method which embeds another method is called nesting of method. For

example.

void outer_method1()

{

int a,b;

void innermethod_display()

{

System.out.println(“nested method”)

}

}

7.9Inheritance

Inheritance is the mechanism through which you can derive

classes/subclasses from other classes. This means that an object of a

subclass can be used wherever an object of the superclass can be used.

The derived class is called as child class or the subclass or you can say

the extended class and the class from which you are deriving the subclass

are called the base class or the parent class. To derive a class in java the

keyword extends is used.. The subclass inherits members of the

superclass and hence promotes code reuse. The subclass itself can add its

own new behavior and properties.

The java.lang.Object class is always at the top of any Class inheritance

hierarchy.

The following kinds of inheritance are discussed here.

 SimpleInheritance

 MultilevelInheritance

Simple/Single Inheritance

Deriving a new class from existing one parent class is called single

inheritance.The following example illustrates the simple /single

inheritance.

Example:

Classes, Objects and mmethods

NOTES

Self-Instructional Material

80

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 class superclass{

 void addnum(int x, int y)

 {

 int sum;

 Sum = x+y;

 System.out.pritnln(“sum of numbers =”+sum);

 }

 void display(){

 System.out.pritnln(“this is super class display ”);

 }

 }

 class subclass extends superclass

 {

 public static void main(String args[])

 {

 subclass s1 = new subclass();

 s1.display();

 s1.adnum(10,20);

 }

 }

Multilevel Inheritance

It is the enhancement of the concept of inheritance. When a subclass is

derived from a derived class then this mechanism is known as the multilevel

inheritance. The derived class is called the subclass or child class for its

parent class and this parent class works as the child class for it's just above (

parent) class. Multilevel inheritance can go up to any number of levels. for

Example,

class A {

 int x;

 int y;

 int get(int p, int q){

 x=p;

y=q;

 return(0);

 }

 void Show()

{

 System.out.println(x);

 }

}

class B extends A

 Class, objects and methods

NOTES

Self-Instructional Material

81

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

{ // level one

 void Showb(){

 System.out.println("B");

 }

}

class C extends B

{ // level two

 void display(){

 System.out.println("C");

 }

 public static void main(String args[])

{

 A a = new A();

 a.get(5,6);

 a.Show();

 }

}

Multiple Inheritances

The mechanism of inheriting the features of more than one base class into

a single subclass is known as multiple inheritances. Java does not support

multiple inheritances directly but the multiple inheritances can be

achieved by using the interface.

In Java Multiple Inheritance can be achieved through use of Interfaces by

implementing more than one interface in a class.

7.10Method Overriding

When a subclass contains a method with the same name and signature as

in the super class then it is called as method overriding.

Example

 class superclass{

 void addnum(int x, int y){

 int sum;

 sum = x+y;

 System.out.println("sum of numbers ="+sum);

 }

void display(){

 System.out.println("super class method is hidden by

subclass");

Classes, Objects and mmethods

NOTES

Self-Instructional Material

82

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 }

 }

 class subclass extends superclass{

 void display(){

 //hides super class display method

 System.out.println("sub class method is called");

 }

 public static void main(String args[]){

 subclass s1 = new subclass();

 s1.display();

 s1.addnum(10,20);

 }

 }

In this example display() method is defined in both superclass and subclass

with same name and type signatures. When display() method is called with

subclass object, it hides superclass method and calls subclass method.

Dynamic Method Dispatch

It is a mechanism by which when an overridden method is called by a super

class object. Java determines the version of the method to be called based

upon the object being used to at the time of call.

Example :

class superclass{

 public void fun1(int x){

 System.out.println("int in superclass");

 }

 public void fun1(int x, int y){

 System.out.println("int and int");

 }

}

class subclass extends superclass{

 public void fun1(int x){

 System.out.println("int in subclass");

 }

}

public class D{

 public static void main(String[] args){

 superclass obj;

 obj= new superclass(); // line 1

 obj.fun1(2); // line 2 (prints "int in superclass")

 obj=new subclass(); // line 3

 Class, objects and methods

NOTES

Self-Instructional Material

83

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 obj.fun1(2); // line 4 (prints "int in subclass")

 }

}

7.11final Variables,classes and methods

 A final variable cannot change its value (to define identifier as

constant)

 A final class cannot be subclassed (to prevent inheritance)

 A final method cannot be overridden by any subclasses (to

prevent overriding)

Variables are declared as final when their value does not change.

 public final PI=3.14;

A final class cannot be sub classed by another class. For example

java.lang.String is final. All methods in a final class are automatically

final.

 public final class A {}

then that means that A cannot be further extended or subclassed.

 class B extends A {} // will not work

A final method cannot be overridden by subclasses. This is used to

prevent unexpected behavior from a subclass altering a method that may

be crucial to the function or consistency of the class.

 publicclass A {

 publicfinal void myFinalMethod() { }

 }

 Class B extends A{

 void myFinalMethod() { } // will not work

 }

Abstract Classes

Sometimes you will want to create a super class that only defines the

generalized form that will be shared by all of its sub classes leaving it to

each sub class to fill in the details. Java Abstract classes are used to

declare common characteristics of subclasses. Abstract classes are used to

provide a template or design for concrete subclasses down the inheritance

http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikipedia.org/wiki/Method_overriding_%28programming%29

Classes, Objects and mmethods

NOTES

Self-Instructional Material

84

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

tree. Such objects would be used as abstract because an abstract class is not

fully defined. Abstract classes are declared with the abstract keyword.

 An abstract class cannot be instantiated with new operator.

 It can only be used as a superclass for other classes that extend the

abstract class.

 You cannot declare abstract constructors.

 You cannot declare abstract static members.

Any sub class of an abstract class must either implement all of the abstract

methods in the super class, or be itself declared as abstract.For Example,

abstract class abstractclassdemo

{

 public void printHello()

{

 // non abstract method i.e. concrete method still allowed

 System.out.pritnln(“Printing from abstract class concrete method”);

 }

abstract void printme():

 }

class testabstract extends abstractclassdemo{

 public void printme(){

 System.out.println(“Implementation of abstract method”);

 }

 public static void main (String args[]){

 testabstract p = new testabstract();

 p.printhello();

 p.printme();

 }

 }

7.12 Check Your Progress Questions

1 What is the purpose of abstract classes?

2 What do you meant by dynamic method dispatch?

7.13 Answers to Check Your Progress Questions

1 Abstract class is used to declare common characteristics of subclasses.

Abstract classes are used to provide a template or design for concrete

subclasses down the inheritance tree.

2 It is a mechanism by which when an overridden method is called by a

super class object. Java determines the version of the method to be called

based upon the object being used to at the time of call.

 Class, objects and methods

NOTES

Self-Instructional Material

85

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

7.14 Summary

Inheritance is the mechanism through which you can derive

classes/subclasses from other classes. This means that an object of a

subclass can be used wherever an object of the superclass can be used.

7.15 Key Words

class is a collection of data and methods that operate on that data.

 Object is an Instance of a Class.

 Constructor is a special function used to initialize the objects.

Every class has at least one its own constructor. Constructor

creates an instance for the class. Constructor initiates (initialize)

something related to the class's methods.

7.16 Self-Assessment Questions and Exercises

1. Explain in detail about various types of inheritance with suitable

example.

2. Briefly explain about constructor overloading.

3. What are abstract classes? Give example

4. Illustrate the use of final variables and methods.

7.17 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java

Programming, New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach,

Firewall media, 2006.

Classes, Objects and mmethods

NOTES

Self-Instructional Material

86

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998.

Arrays, Strings and Vectors

 NOTES

Self-Instructional Material

87

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

UNIT 8

ARRAYS, STRINGS AND VECTORS

Structure

8.1 Introduction

8.2 Objectives

8.3One dimensional arrays

8.4 Creating of array

8.5Two dimensional arrays

8.6 Strings

8.7Vectors

8.8Wrapper classes

8.9Enumerated Types

8.10Interfaces: Multiple Inheritances

8.11 Check Your Progress Questions

8.12 Answers to Check Your Progress Questions

8.13 Summary

8.14 Key Words

8.15 Self-Assessment Questions and Exercises

8.16 Further Readings

8.1 Introduction

Variables are used to store one value at a time. When you want to store

multiple values of same type in a single identifier array is used. Strings

are special form of arrays which contains sequence of characters.

Vectors differ considerably from arrays. Arrays are of only one type of

values and the number of elements cannot be changed. Vectors instead

can hold a mix of class objects (they are, of course, all subclasses of

Object.)

8.2 Objectives

After going through the unit you will be able to;

 Know about fundamentals of arrays, strings and vectors

 Understand about creating and using one dimensional and

multidimensional arrays.

 Perform various string manipulation functions

 Know about various wrapper classes

Arrays, Strings and Vectors

NOTES

Self-Instructional Material

88

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 Discuss about creating and using vectors

 Learn about multiple inheritances

8.1 One dimensional Arrays

The java array enables the user to store the values of the same type in

contiguous memory allocations. Arrays are always a fixed length

abstracted data structure which cannot be altered when required. Arrays

can hold data of similar type.

To use an array we require the following to be done.

 Declare a variable to be used as the array name

 Create an array object and assign to the variable

8.2 Creating One Dimensional Array

Array variable has a type and a valid Java identifier i.e. the array's type and

the array's name. By type we mean the type of elements contained in

an array. To represent the variable as an Array, we use [] notation. These

two brackets are used to hold the array of a variable.for Example,

Examples

int[] array_name; //declares an array of integers

String[] names;

int[][] matrix; //this is an array of arrays

It is essential to assign memory to an array when we declare it. Memory is

assigned to set the size of the declared array. for example:

int[] array_name = new int[5];

Here is an example that creates an array that has 15 elements.

 public class Array{

 public static void main(String[] args){

 float[] a = new float[15];

 }

}

Array Initialization

The "new" operator is used for the allocation of memory to the array

object. The correct way to use the "new" operator is

Arrays, Strings and Vectors

 NOTES

Self-Instructional Material

89

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

String names[];

names = new String[10];

Here, the new operator is followed by the type of variable and the number

of elements to be allocated. In this example [] operator has been used to

place the number of elements to be allocated. For Example

public class Sum{

 public static void main(String[] args){

 int[] x = new int [101];

 for (int i = 0; i<x.length; i++) x[i] = i;

 int sum = 0;

 for(int i = 0; i<x.length; i++)

 sum += x[i];

 System.out.println(sum);

 }

}

In this example, a variable 'x' is declared which has a type array of int,

that is, int[]. The variable x is initialized to reference a newly created

array object. The expression 'int[] = new int[50]' specifies that the array

should have 50 components. To know the length of the Array, we use

field length, as shown.

Output for the given program:

 C:\java>java Sum

 5050

Instead of assigning memory to the array you can assign values to it

instead. This is called initializing the array because it is giving the array

initial values.

public class Array{

 public static void main(String[] args) {

 int[] a = {12, 23, 34, 45, 56};

 }

}

Using an array

You can access the values in an array using the number of the element

you want to access between square brackets after the array's name. There

is one important thing you must remember about arrays which is they

always start at 0 and not 1. Here is an example of how to set the values for

an array of 5 elements.

Arrays, Strings and Vectors

NOTES

Self-Instructional Material

90

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

public class Array{

 public static void main(String[] args) {

 int[] a = new int[5];

 a[0] = 10;

 a[1] = 20;

 a[2] = 30;

 a[3] = 40;

 a[4] = 50; }}

A much more useful way of using an array is in a loop. Here is an example

of how to use a loop to set all the values of an array to 0 which you will

see is much easier than setting all the values to 0 separately.

public class Array{

 public static void main(String[] args) {

 int[] a = new int[5];

 for (int i = 0; i < 5; i++) a[i] = 0;

 }

}

Sorting an array

Sometimes you will want to sort the elements of an array so that they go

from the lowest value to the highest value or the other way around. Here is

an example.

public class Array{

 public static void main(String[] args) {

 int[] a = {3, 5, 1, 2, 4};

 int i, j, temp;

 for (i = 4; i >= 0; i--)

 for (j = 0; j < i; j++)

 if (a[j] > a[j + 1])

 {

 temp = a[j];

 a[j] = a[j + 1];

 a[j + 1] = temp;

 }

 }

}

Character Arrays:

Character Arrays can be constructed using the following form,

char[] a = new char[5];

Example,

public class Main1 {

Arrays, Strings and Vectors

 NOTES

Self-Instructional Material

91

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 /**

 * Converts a String to a character array

 */

 public void convertStringToCharArray() {

 String str = "Abcdefg";

 char[] cArray = str.toCharArray();

 for (char c=0;c<=cArray.length-1;c++)

 System.out.println(cArray[c]);

 }

 public static void main(String[] args) {

 new Main1().convertStringToCharArray();

 }

}

8.3 Two dimensional arrays

Two-dimensional arrays are defined as "an array of arrays" which

contains two or more indexes. Since an array type is a first-class Java

type, we can have an array of integers, an array of Strings, or an array of

Objects. For example, an array of ints will have the type int[]. Similarly

we can have int[][], which represents an "array of arrays of ints". Such an

array is said to be a two-dimensional array.

The command

 int[][] A = new int[3][4]

Declares a variable, A, of type int[][], and it initializes that variable to

refer to a newly created object.for Example,

public class Array{

 public static void main(String[] args) {

 int[][] a = new int[3][3];

 a[0][0] = 1;

 }

}

Multidimensional arrays

To store data in more dimensions a multi-dimensional array is used. The

Java programming language does not really support multi-dimensional

arrays. It does, however, support an array of arrays. In Java, a two-

dimensional array 'x' is an array of one-dimensional array. For instance :-

Arrays, Strings and Vectors

NOTES

Self-Instructional Material

92

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 int[][] x = new int[3][5];

8.4 Strings

Every string is actually an object of type string. Even string constants are actually

string objects.A simple String can be created using a string literal enclosed inside

double quotes as shown;

 String str1 = “My name is babu”;

Since a string literal is a reference, it can be manipulated like any other String

reference. The reference value of a string literal can be assigned to another String

reference.

If two or more Strings have the same set of characters in the same sequence then

they share the same reference in memory. Below illustrates this phenomenon.

 String str1 = “My name is babu”;

 String str2 = “My name is babu”;

 String str3 = “My name ”+ “is babu”; //Compile time expression

 String name = "babu";

 String str4 = “My name is” + name;

 String str5 = new String(“My name is babu”);

In the above code all the String references str1, str2 and str3 denote the same

String object, initialized with the character string: “My name is babu”. But the

Strings str4 and str5 denote new String objects.

8.5Vectors

Vectors differ considerably from arrays. Arrays are of only one type and

the number of elements cannot be changed. Vectors instead can hold a mix

of class objects (they are, of course, all subclasses of Object.) The size of a

vector may increase and / or decreasedepending on the program. Vector is

synchronized. Constructors for Vector class,

Vector(int, int) Constructs an empty vector with the specified storage

capacity and the specified capacity Increment.

Vector(int) Constructs an empty vector with the specified storage

capacity.

Vector() Constructs an empty vector.

List of few methods from Vector class,

addElement(Object) Adds the specified object as the last element of the

Arrays, Strings and Vectors

 NOTES

Self-Instructional Material

93

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

vector.

capacity() Returns the current capacity of the vector.

contains(Object) Returns true if the specified object is a value of the

collection.

elementAt(int) Returns the element at the specified index.

firstElement() Returns the first element of the sequence.

indexOf(Object) Searches for the specified object, starting from the

first position and returns an index to it.

lastElement() Returns the last element of the sequence.

removeAllElements() Removes all elements of the vector.

removeElementAt(int) Deletes the element at the specified index.

size() Returns the number of elements in the vector.

toString() Converts the vector to a string.

Example :

 Vector list = new Vector ();

 list.addElement (" a new string object");

 list.addElement (" another new string object");

 list.addElement (new Date ());

 list.addElement (new Date ());

 list.removeElementAt (3);

Example program :

import java.util.*;

public class VectorDemo

{

 public static void main(String[] args)

{

 Vector vector = new Vector();

 int primitiveType = 10;

 Integer wrapperType = new Integer(20);

 String str = "sunil kumar";

 vector.add(wrapperType);

 vector.add(str);

 vector.add(2, new Integer(30));

 System.out.println("the elements of vector: " + vector);

 System.out.println("The size of vector are: " + vector.size());

 System.out.println("The elements at position 2 is: " +

vector.elementAt(2));

 System.out.println("The first element of vector is: " +

vector.firstElement());

 System.out.println("The last element of vector is: " +

vector.lastElement());

 vector.removeElementAt(2);

 Enumeration e=vector.elements();

Arrays, Strings and Vectors

NOTES

Self-Instructional Material

94

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 System.out.println("The elements of vector: " + vector);

 while(e.hasMoreElements()){

 System.out.println("The elements are: " + e.nextElement());

 } }}

Output :

the elements of vector: [20, sunil kumar, 30]

The size of vector are: 3

The elements at position 2 is: 30

The first element of vector is: 20

The last element of vector is: 30

The elements of vector: [20, sunil kumar]

The elements are: 20

The elements are: sunil kumar

8.6 Wrapper classes

 A primitive wrapper class in the Java programming language is one

of eight classes provided in the java.lang package to provide object

methods for the eight primitive types. All of the primitive wrapper classes

in Java are immutable.The primitive wrapper classes and their

corresponding primitive types are:

Primitive

type

Wrapper

class

byte Byte

short Short

long Long

float Float

double Double

char Char

Boolean Boolean

For example , Integer class has parseInt() method to parse integer from

string data type.

 Class cmdLine {

 public static void main(String args[])

 {

 int u, sum = 0;

 for(i=0;i<args.lenth;i++)

 sum += Integer.parseInt(args[i]);

 System.out.println(“sum of numbers =”+sum);

 }

Arrays, Strings and Vectors

 NOTES

Self-Instructional Material

95

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The output is :

 C:\java>javac cmdLine.java

 C:\java>java cmdLine 10 20 30

 Sum of numbers = 60

8.7 Enumerated Types

Java enums can be classes which have a fixed set of constants. These

constants are final and static. They cannot be changed or modified.

Enumerated data types are used to create own classes. The enum type has

a values() method which returns a set of all enum constants. It can be used

when we have all possible values at compile time, for the use of choices

and menus etc., for example

enum Choice

{

 LOW,MIDDLE, HIGH

}

public lass test

{

public static void main(String[] args)

Choice c1= Choice.HIGH;

System.out.println(c1)

}

}

Output:

HIGH

8.8 Interfaces: Multiple Inheritances

The mechanism of inheriting the features of more than one base class into

a single subclass is known as multiple inheritances.

Java does not support multiple inheritances directly but the multiple

inheritances can be achieved by using the interface.

 In Java Multiple Inheritance can be achieved through use of

Interfaces by implementing more than one interface in a class.

8.11 Check Your Progress Questions

Arrays, Strings and Vectors

NOTES

Self-Instructional Material

96

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

1. Define Array.

2. Differentiate between array and vector.

8.12 Answers to Check Your Progress Questions

1. An Array is an ordered list of elements stored in a single variable with

variable indexes. The values of the array are of same type.

2. Vectors differ considerably from arrays. Arrays are of only one type and

the number of elements cannot be changed. Vectors instead can hold a mix

of class objects (they are, of course, all subclasses of Object.)

8.13 Summary

The java array enables the user to store the values of the same type in

contiguous memory allocations. Arrays are always a fixed length

abstracted data structure which cannot be altered when required. Two-

dimensional arrays are defined as "an array of arrays" which contains two

indexes.

Vectors differ considerably from arrays. Arrays are of only one type and

the number of elements cannot be changed. Vectors instead can hold a mix

of class objects (they are, of course, all subclasses of Object.)

A primitive wrapper class in the Java programming language is one of

eight classes provided in the java.lang package to provide object methods

for the eight primitive types.

8.14 Key Words

String is actually an object of type string. Even string constants are actually

string objects.

Array is an ordered list of elements of same type.

Vectors can hold a mix of class objects (they are, of course, all subclasses

of Object.)

8.15 Self-Assessment Questions and Exercises

Arrays, Strings and Vectors

 NOTES

Self-Instructional Material

97

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

1) Explain how to define and use arrays. Give examples

2) What are multidimensional arrays?

3) Write a java program to sort 10 given numbers.

4) Write a java program to count number of vowels using char array.

8.16 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java

Programming, New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach,

Firewall media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998.

Packages and Interfaces

NOTES

Self-Instructional Material

98

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

UNIT 9

PACKAGES AND INTERFACES

Structure

9.1 Introduction

9.2 Objectives

9.3Packages:

9.3.1 Defining a package

9.3.2 Importing packages

9.4 Interfaces

9.4.1 Defining interface

9.4.2 Extending interfaces

9.4.3 Implementing Interfaces

9.4.4 Putting Classes Together

9.5 Check Your Progress Questions

9.6 Answers to Check Your Progress Questions

9.7 Summary

9.8 Key Words

9.9 Self-Assessment Questions and Exercises

9.10 Further Readings

9.1 Introduction

Java classes and interfaces are wrapped into packages. There are some

predefined packages such as java.applet, java.awt(abstract windowing

tool kit) and java.io (input and output). The users can also define their

own packages with set of its methods and data members. Packages

provide opportunity in combing classes belong particular project or work.

Packages can also further divided into sub packages.An interface is a

skeleton of a class showing the methods the class with have when

someone implements. Using the keyword interface you can fully abstract

a class interface from its implementation.

9.2 Objectives

After going through the unit you will be able to;

 Learn about creating and importing packages

 Know about different type of access modifiers

 Understand defining, extending and implementing interfaces

 Set the class path to access packages.

 Packages and Interfaces

NOTES

Self-Instructional Material

99

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

9.3 Packages

Packages are a collection of classes and interfaces of similar nature.

Packages are containers for classes that are used to keep the class

namespace compartmentalized. For example java.io package contains

classes and interfaces for various kinds of input and output.java programs

automatically import all classes in the java.lang package.

9.3.1 Defining a package

To create packages simply include the package keyword as the first

command in a java source file. Any classes declared within that file will

belong to specified package. The package statement defines a

namespace in which classes are stored.

Note: -

If you omit the package statement class names are put into default a

package which has no name.

General format:-

 package pkgname;

Example:-

 package mypackage;

Java uses file system directories to store packages.

Example::-

 The .class files for any classes you declare to be part of

MyPackage must be stored in a directory called MyPackage.

Note:-

The directory name must match the package name exactly.

 More than one file can include the same package statement.

You can create a hierarchy of packages. To do so simply separate each

package name from the one above it by using of a period operator(.).

General format for multilevel package:-

 package pk1[.pk2[.pk3]];

Packages and Interfaces

NOTES

Self-Instructional Material

100

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Example:

 package java.awt.image;

The following Example explains creating and importing package called

MyPack.

Create Balance.java file and save it in c:\jdk1.3\bin\MyPack directory.

package MyPack;

/* Now, the Balance class, its constructor, and its show() method

are public. This means that they can be used by non-subclass code

outsidetheir package.

*/

public class Balance

{

String name;

double bal;

public Balance(String n, double b)

{

name=n;

bal=b;

}

public void show()

{

if(bal<0)

System.out.println("------>");

System.out.println(name + ": $" +bal);

}

}

Now compile that Balance.java file.

C:\jdk1.3\bin\MyPack>javac Balance.java

When you run this file

C:\jdk1.3\bin>java MyPack.Balance

Exception in thread “main” java.lang.NoSuchMethodErro : main will

occur.Because there is no main() method inside Balance class. It can be

access by importing the Balance.class from another java file.

 Packages and Interfaces

NOTES

Self-Instructional Material

101

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

9.3.2 Importing Packages

In a java source file import statements occur immediately following the

package statement and before any class definition.

General format:- import pkg1[.pkg2].(classname/*);

 where, pkg name of the top level package

 pkg2name of the subordinate package inside outer package

separated by .(dot)

Note: No practical limit on depth of package hierarchy

 to import the entire package.

For example to import the above mentioned Balance class, create

TestBalance.java file and save it in c:\jdk1.3\bin> directory

import MyPack.*;

class TestBalance{

public static void main(String args[]){

/*Because Balance is public, you may use Balance

class and call its constructor */

Balance test = new Balance ("kumar", 99.88);

test.show(); // You may also call show()

}

}

Now compile this file

C:\jdk1.3\bin>javac TestBalance.java

Run this file

C:\jdk1.3\bin>java TestBalance.java

Output :

Kumar 99.88

Note that to execute TestBalance class you must one level up in the

Packages and Interfaces

NOTES

Self-Instructional Material

102

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Balance.class or you can set the classpath.

Setting Class path:

CLASSPATH variable play a significant role in locating classes. If

classpath is not set, java will look for the classes in the current directory

and the default directory that is generally c:\jdk\lib. If the classpath is

specified then java will look only in those directories specified by the

variable CLASSPATH. Remember to include current directory and the

default directory also when you are setting classpath.

Access Modifiers :Access modifiers are used to specify the visibility and

accessibility of a class, member variables and methods. Java provides

some access modifiers like: public, private etc.. These can also be used

with the member variables and methods to specify their accessibility.

 public keyword specifies that the public class, the public fields and

the public methods can be accessed from anywhere.

 private:This keyword provides the accessibility only within class

i.e. private fields and methods can be accessed only within the

same class.

 protected:This modifier makes a member of the class available to

all classes in the same package and all sub classes of the class.

9.4 Interfaces

Interfaces are designed to support dynamic method resolution at run

time. Java introduces the notion of interfaces to recover much of the

default :When you don't

write any access modifier

then default is considered.

It allows the class, fields

and methods accessible

within the package only.

Private
No

modifier
Protected Public

Same class Yes Yes Yes Yes

Same package subclass No Yes Yes Yes

Same package non

subclass
No Yes Yes Yes

Different package

subclass
No No Yes Yes

Different package non

subclass
No No No Yes

 Packages and Interfaces

NOTES

Self-Instructional Material

103

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

functionality that multiple inheritances give you. Java chooses this

concept because:

 Multiply inheritance makes compilers either very complex or very

inefficient

 With multiple inheritances there are name clashes in the base

classes. That is, if tow base classes have the methods with the

same name, then this results in the name clash in the class which

inherits these two base classes.

Interfaces avoid this kind of problem.

Interfaces are syntactically similar to classes, but they lack instance

variables and their methods are declared without any body. Once it is

defined, any number of classes can implement an interface. Also one class

can implement any number of interfaces.

To implement an interface, a class must create the complete set of

methods defined by the interface. However, each class is free to determine

the details of its own implementation.

9.4.1 Defining an Interface

The General form of an interface :

 access interface iname{

 returntype methodname1(parameter list);

 returntype methodname2(parameter list);

 type final variablenam1 = value;

 type final variablenam2 = value;

//..

 returntype methodnameN(parameter list);

 type final variablenamN = value;

 }

Where, access is either public or not used.

Variables can be declared inside of interface declarations but they are

implicitly final and static, they cannot be changed by the implementing

class and must be initialized by constant value. All methods and variables

are implicitly public if the interface itself is declared as public.

Example

 interface ifacename

 {

Packages and Interfaces

NOTES

Self-Instructional Material

104

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 void display(int param1);

 }

9.4.2 Extending Interfaces

One interface can inherit another by used of the keyword extends. The

general format is the same as for inheriting classes. When a class

implements an interface that inherits another interface, it must provide

implementations for all methods defined within the interface inheritance

hierarchy.

Example:

interface parent{

 void method1();

 void method2();

}

interface child extends parent

{

 void method3();

}

// this class must implement all of parent and child methods

class Myclass implements child

{

 public void method1(){

 System.out.println(“implementation of method1”);

 }

 public void method2(){

 System.out.println(“implementation of method2”);

 }

 public void method3(){

 System.out.println(“implementation of method3”);

 }

}

class Iface

{

 public static void main(String args[])

 {

 Myclass ob= new Myclass();

 ob.method1();

 ob.method2();

 ob.method3();

}

 Packages and Interfaces

NOTES

Self-Instructional Material

105

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

}

}

9.4.3 Implementing Interfaces

To implement an interface, include the implements keyword in a class

definition and then create the methods defined by the interface. Once an

interface has been defined, one or more classes can implement that

interface.

The General Format of a class that implement an interface

 access class classname[extends superclass] [implements interface

[,interface…]]

{

 // class body

}

Where, access is either public or not used. If a class implements more

than one interface, the interfaces are separated by comma.

Example 1:

class myclass implements ifacename

{

 // Implement ifacename interface

 public void display (int p)

{

 System.out.println(“display is called with “+p);

}

}

Example 2:

class myclass implements ifacename

{

 // Implement ifacename interface

 public void display (int p)

{

 System.out.println(“display is called with “+p);

}

void nonIfacemeth()

Packages and Interfaces

NOTES

Self-Instructional Material

106

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

{

System.out.println(“Class can define its own methodstoo..”)

}

Accessing implementations through interface references

You can declare variable as object references that use an interface rather

than a class type. Any instance of any class that implements the declared

interface can be stored in such a variable.

The following example calls the display() method, via an interface

reference variable.

class ireftest

{

 public static void main(String args[])

{

 ifacename c = new myclass();

 c.display(100);

 }

 }

Variable in Interfaces

Variables can be declared inside interface but they are final. You can use

interfaces to import shared constants into multiple classes.

Example ;

 interface constants

 {

 final int OK =1;

 final int NOTOK=2;

 final int CANCEL=3;

 }

9.4.4 Putting Classes Together

First, an interface can only contain abstract methods and/or static final

variables (constants). Classes, on the other hand, can implement methods

and contain variables that are not constants.

Second, an interface cannot implement any methods. A class that

implements an interface must implement all methods defined in that

interface. An interface has the ability to extend from other interfaces, and

(unlike classes) can extend from multiple interfaces. Furthermore, an

 Packages and Interfaces

NOTES

Self-Instructional Material

107

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

interface cannot be instantiated with the new operator;

for example, Runnable a=new Runnable(); is not allowed.

9.5 Check Your Progress Questions

1. List the name of access modifiers.

2. Define Interface.

3. What are packages?

9.6 Answers to Check Your Progress Questions

1. Public, private, protected, default

2. An interface is a skeleton of a class showing the methods the class with

have when someone implements.

3. Packages are a collection of classes and interfaces of similar nature.

9.7 Summary

Packages are a collection of classes and interfaces of similar nature.

Packages are containers for classes that are used to keep the class

namespace compartmentalized. Access modifiers are used to specify the

visibility and accessibility of a class, member variables and methods. Java

provides some access modifiers like: public, private etc. Interfaces are

designed to support dynamic method resolution at run time.

9.8 Key Words

Access Modifiers : Access modifiers are used to specify the visibility and

accessibility of a class, member variables and methods. Java provides

some access modifiers like: public, private etc.

public keyword specifies that the public class, the public fields and the

public methods can be accessed from anywhere.

private: This keyword provides the accessibility only within class i.e.

private fields and methods can be accessed only within the same class.

protected: This modifier makes a member of the class available to all

classes in the same package and all sub classes of the class.

Packages and Interfaces

NOTES

Self-Instructional Material

108

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

default : When you don't write any access modifier then default is

considered. It allows the class, fields and methods accessible within the

package only.

Interfaces are designed to support dynamic method resolution at run

time.

9.9 Self-Assessment Questions and Exercises

1) What are packages? Give predefined package names.

2) How do define a new package? Explain

3) Explain how to import newly created packages.

4) Write short note on setting classpath for accessing packages.

5) Explain the role of access modifiers in packages.

6) Define interface.

7) What are the merits of interface?

8) Describe how to define and implement interfaces.

9) How variables are defined in interface? Explain.

10) Distinguish between class and interface.

9.10 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java Programming,

New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998

Multithreaded programming

NOTES

Self-Instructional Material

109

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

BLOCK 4

MULTITHREADING, EXCEPTION

AND APPLETS

UNIT 10

 MULTITHREADED PROGRAMMING

Structure

10.1 Introduction

10.2 Objectives

10.3Creating Threads

10.4Extending the thread class

10.5Stopping and Blocking a thread

10.6Life cycle of a thread

10.7Using thread methods

10.8Thread Exceptions

10.9Priority

10.10Synchronization

10.11Implementing the ‘Runnable’ Interface

10.12 Check Your Progress Questions

10.13 Answers to Check Your Progress Questions

10.14 Summary

10.15 Key Words

10.16Self-Assessment Questions and Exercises

10.17 Further Readings

10.1 Introduction

A thread is a lightweight process which exists within a program and

executed to perform a special task. Several threads of execution may be

associated with a single process. Each thread has its own local variables,

program counter and lifetime.

In single threaded runtime environment, operations are executes

sequentially i.e. next operation can execute only when the previous one is

complete. Thus a process that has only one thread is referred to as a single-

threaded process, while a process with multiple threads is referred to as a

multi-threaded process.

Multithreaded Programming

NOTES

Self-Instructional Material

110

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

10.2 Objectives

After going through the unit you will be able to;

 Create Threads

 Extending the thread class

 Stopping and Blocking a thread

 Understand Life cycle of a thread

 Use thread methods

 Know about Thread Exceptions

 Learn about thread Priority

 Discuss about Synchronization

 Learn how to Implement the ‘Runnable’ Interface

10.3 Creating a Thread

To create a new thread, your program will either extend Thread or

implement the Runnable interface.

The Main Thread

The main() method is the first executable method runs in a one thread

when java programs starts. The main thread creates some other threads

called child threads. Often main() must be the last thread to finish

execution because it performs various shutdown actions. If no other

threads are created by the main thread, then program terminates when the

main() method complete its execution. Main thread can be controlled

through a Thread object. To do so, you must obtain a reference to it by

calling the method currentThread(), which is a public static member of

Thread.

Its general form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once

you have areference to the main thread, you can control it just like any

other thread. for Example,

// Controlling the main Thread.

class MainThreadDemo

{

public static void main(String args[])

{

Thread t = Thread.currentThread();

Multithreaded programming

NOTES

Self-Instructional Material

111

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

System.out.println("Current thread: " + t);

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " + t);

try {

 for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000);}

} catch (InterruptedException e)

{

System.out.println("Main thread interrupted");

}

}

}

 Here is the output generated by this program:

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

10.4 Creating a Thread by Extending Thread Class

The second way to create a thread is to create a new class that extends

Thread.The Thread class defines Several constructors for creating new

Thread instances.

Thread()

Thread(String)

Thread(Runnable)

Thread(Runnable,String)

Thread(ThreadGroup,String)

Thread(ThreadGroup,Runnable)

Thread(ThreadGroup,Runnable,String)

Thread(ThreadGroup, Runnable, String, long)

ThreadGroup– All threads belongs to an instance of the ThreadGroup

Class. ThreadGroup is used to represent a group of threads. ThreadGroups

can be shown in a hierarchical manner. There is only one root

ThreadGroup that contains all other thread and groups and each subgroup

can contain other groups and threads. All thread have only one thread

Multithreaded Programming

NOTES

Self-Instructional Material

112

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

group. And all thread groups (except the root thread group) belongs to

exactly one parent thread group.

Steps for creating Thread by Extending Thread class

1. Extend the java.lang.Thread Class.

2. Override the run() method in the subclass from the Thread class to

define the code executed by the thread.

3. Create an instance of this subclass. This subclass may call a Thread

class constructor by subclass constructor.

4. Invoke the start() method on the instance of the class to make the

thread eligible for running.

Example To create new thread by extending Thread class

class MyThread1 extends Thread

{

 String s=null;

 MyThread1(String s1){

 s=s1;

 start();

 }

 public void run(){

 System.out.println(s);

 }}

public class RunThread{

 public static void main(String args[]){

 MyThread1 m1=new MyThread1("Thread started....");

 }

}

10.5 Stopping and Blocking a thread

The Thread class has a method suspend() to temporarily halt the thread

and resume() that re-starts it at the point it was halted. A program used

suspend() and resume(), which are methods defined by Thread, to pause

and restart the execution of a thread. They have the form shown below:

final void suspend()

final void resume()

The Thread class also defines a method called stop() that stops a thread.

Its signature is shown here:

final void stop()

Multithreaded programming

NOTES

Self-Instructional Material

113

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

Once a thread has been stopped, it cannot be restarted using resume().

10.6 Life cycle of a thread

The thread in java has four states in its life cycle. They are new, runnable,

Non-runnable(blocked/Waiting) and terminated(dead).The figure 10.1

shows the life cycle of a thread.

Figure 10.1 Life cycle of a thread

1. New

When you create a new instance of a thread class and before calling

the start() method, the thread state is called new.

2. Runnable

The thread is in runnable state when the invocation of start()

method.

3. Non-runnable(blocked)

When the thread is still alive but not under running state the thread

is called blocked or non-runnable state.

4. Terminated

Multithreaded Programming

NOTES

Self-Instructional Material

114

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

When the run method is existed the thread goes to terminate or

dead state.

10.7 Using thread methods

The Thread class defines several methods that help manage threads. The

ones that will be used in this chapter are shown here:

Method Meaning

getName() Obtain a thread’s name.

getPriority() Obtain a thread’s priority.

isAlive() Determine if a thread is still running.

join() Wait for a thread to terminate.

run () Entry point for the thread.

sleep () Suspend a thread for a period of

time.

start () Start a thread by calling its run

method

10.8 Thread Exception

In Java all uncaught exceptions are handled by code outside of the run()

method before the thread terminates. The following example shows how to

handle exception in thread.

class MyThreadDemo extends Thread

{

 public void run(){

 System.out.println("Throwing in " +"MyThread");

 throw new RuntimeException();

 }

}

public class MainDemo

{

 public static void main(String[] args)

{

 MyThreadDemo t = new MyThreadDemo();

 t.start();

 try {

 Thread.sleep(1000);

 } catch (Exception x) {

 System.out.println("Exception - Caught it" + x);

 }

 System.out.println("Exiting main");

Multithreaded programming

NOTES

Self-Instructional Material

115

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 }

}

10.9Thread Priorities

In Java, thread scheduler can use the thread priorities in the form of

integer value to each of its thread to determine the execution schedule of

threads . The thread scheduler provides the CPU time to thread of highest

priority. Priorities are integer values from 1 (lowest priority given by the

constant Thread.MIN_PRIORITY) to 10 (highest priority given by the

constant Thread.MAX_PRIORITY). The default priority is 5

Thread.NORM_PRIORITY). If two threads of the same priority are

waiting for the CPU, the scheduler chooses one of them to run in a round-

robin fashion.

When a Java thread is created, it inherits its priority from the thread that

created it. At any given time, when multiple threads are ready to be

executed, the runtime system chooses the runnable thread with the highest

priority for execution.

In Java runtime system, preemptive scheduling algorithm is applied. If at

the execution time a thread with a higher priority and all other threads are

runnable then the runtime system chooses the new higher priority thread

for execution. On the other hand, if two threads of the same priority are

waiting to be executed by the CPU then the round-robin algorithm is

applied in which the scheduler chooses one of them to run according to

their round of time-slice.

Thread Scheduler

In the implementation of threading scheduler usually applies one of the

two following strategies:

 Preemptive scheduling – If the new thread has a higher priority

then current running thread leaves the runnable state and higher

priority thread enter to the runnable state.

 Time-Sliced (Round-Robin) Scheduling – A running thread is

allowed to be execute for the fixed time, after completion the time,

current thread indicates to the another thread to enter it in the

runnable state.

To set a thread’s priority, use the setPriority() method, which is a

member of Thread.

Multithreaded Programming

NOTES

Self-Instructional Material

116

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

General format is ,

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The

value of level must be within the range MIN_PRIORITY and

MAX_PRIORITY. These priorities are defined as final variables within

Thread.

You can obtain the current priority setting by calling the getPriority()

method of Thread.

General Format is,

final int getPriority()

The following example demonstrates two threads at different priorities,

which do not run on a preemptive platform in the same way as they run on

a nonpreemptive platform. One thread is set two levels above the normal

priority, as defined by Thread.NORM_PRIORITY, and the other is set

to two levels below it. The threads are started and allowed to run for ten

seconds. Each thread executes a loop, counting the number of iterations.

After ten seconds, the main thread stops both threads. The number of times

that each thread made it through the loop is then displayed.for Example,

// Demonstrate thread priorities.

class clicker implements Runnable {

double click = 0;

Thread t;

private volatile boolean running = true;

public clicker(int p)

{

t = new Thread(this);

 t.setPriority(p);

}

public void run()

{

while (running)

{ click++; }

}

public void stop()

{ running = false; }

public void start() {

t.start(); }

}

class HiLoPri {

public static void main(String args[])

{

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

Multithreaded programming

NOTES

Self-Instructional Material

117

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

clicker hi = new clicker(Thread.MAX_PRIORITY);

 clicker lo = new clicker(Thread.MIN_PRIORITY);

lo.start();

hi.start();

try {

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

lo.stop();

hi.stop();

// Wait for child threads to terminate.

try {

hi.t.join();

lo.t.join();

} catch (InterruptedException e)

{ System.out.println("InterruptedException caught"); }

System.out.println("Low-priority thread: " + lo.click);

System.out.println("High-priority thread: " + hi.click);

}

}

The output of this program

Low-priority thread: 1.118364553E9

High-priority thread: 1.155930947E9

Of course, the exact output produced by this program depends on the speed

of your CPU and the number of other tasks running in the system.

10.10 Synchronization

The threads are executed independently to each other. These types of

threads are called as asynchronous threads. But there are two problems

may be occurring with asynchronousthreads.

 Two or more threads share the same resource (variable or method)

while only one of them can access the resource at one time.

 If the producer and the consumer are sharing the same kind of data

in a program then either producer may produce the data faster or

consumer may retrieve an order of data and process it without its

existing.

Suppose, you have created two methods as increment() and decrement().

which increases or decreases value of the variable "count" by 1

respectively shown as:

Multithreaded Programming

NOTES

Self-Instructional Material

118

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

 public void increment() {

 count++;

 }

 public void decrement() {

 count--;

 }

public int value() {

 return count;

 }

When the two threads are executed to access these methods (one for

increment(),another for decrement()) then both will share the variable

"count". in that case, you can't be sure that what value will be returned of

variable "count".

To avoid this problem, Java uses monitor also known as “semaphore” to

prevent data from being corrupted by multiple threads by a keyword

synchronized to synchronize them and intercommunicate to each other. It

is basically a mechanism which allows two or more threads to share all the

available resources in a sequential manner. Java's synchronized is used to

ensure that only one thread is in a critical region. critical region is a lock

area where only one thread is run (or lock) at a time. Once the thread is in

its critical section, no other thread can enter to that critical region. In that

case, another thread will has to wait until the current thread leaves its

critical section.

When two or more threads need access to a shared resource, they need

some way to ensure that the resource will be used by only one thread at a

time. The process by which this is achieved is called synchronization.

You can synchronize your code in either of two ways. Both involve the use

of thesynchronized keyword, and both are examined here.

1. Synchronized Methods

2. Synchronized Blocks (Statements)

Using Synchronized Methods

Any method is specified with the keyword synchronized is only executed

by one thread at a time. If any thread wants to execute the synchronized

method, firstly it has to an object’s monitor, just call a method that has

been modified with the synchronized keyword. While a thread is inside a

synchronized method, all other threads that try to call it on the same

instance have to wait. To exit the monitor and relinquish control of the

object to the next waiting thread.

//This is not Synchronized

Multithreaded programming

NOTES

Self-Instructional Material

119

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

class DisplayMessage {

void display(String msg) {

 System.out.print("[" + msg);

 try {

 Thread.sleep(1000);

 } catch(InterruptedException e)

 {

 System.out.println("Interrupted"); }

 System.out.print("]"); }

 }

class Caller implements Runnable {

 String msg;

 DisplayMessage target;

 Thread t;

 public Caller(DisplayMessage targ, String s) {

 target = targ; msg = s;

 t = new Thread(this); t.start();

 }

public void run() {

 target.display(msg); }

}

class Sync {

public static void main(String args[]) {

 DisplayMessage target = new DisplayMessage();

 Caller ob1 = new Caller(target, "This");

 Caller ob2 = new Caller(target, "is not");

 Caller ob3 = new Caller(target, "Synchronized");

 try {

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 } catch(InterruptedException e) {

 System.out.println("Interrupted");

 } } }

Output

[This[is not[Synchronized]]]

To fix the preceding program, you must serialize access to display(). That

is, you must restrict its access to only one thread at a time. To do this, you

simply need to precede display()’s definition with the keyword

synchronized, as shown here:

class Display Message{

synchronized void display(String msg) {

...

Multithreaded Programming

NOTES

Self-Instructional Material

120

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

This prevents other threads from entering display() while another thread is

using it.

/* This is Synchronized

class DisplayMessage

{

synchronized void display(String msg)

{

 System.out.print("[" + msg);

 try {

 Thread.sleep(1000);

 } catch(InterruptedException e) {

System.out.println("Interrupted"); }

 System.out.print("]"); }

}

class Caller implements Runnable

{

 String msg;

 DisplayMessage target;

 Thread t;

 public Caller(DisplayMessage targ, String s) {

 target = targ;

 msg = s;

 t = new Thread(this);

 t.start();

 }

public void run() {

 target.display(msg); }

}

class Sync {

public static void main(String args[])

{

 DisplayMessage target = new DisplayMessage();

 Caller ob1 = new Caller(target, "This");

 Caller ob2 = new Caller(target, "is");

 Caller ob3 = new Caller(target, "Synchronized");

 try {

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 } catch(InterruptedException e)

{ System.out.println("Interrupted");

} } }

After synchronized has been added to display(), the output of the program

is as follows:

[This][is][Synchronized]

Multithreaded programming

NOTES

Self-Instructional Material

121

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

The synchronized Statement

Imagine that you want to synchronize access to objects of a class that was

not designed for multithreaded access. That is, the class does not use

synchronized methods. How can access to an object of this class be

synchronized? You simply put calls to the methods defined by this class

inside a synchronized block.

This is the general form of the synchronized statement:

synchronized (object)
{

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A

synchronized block ensures that a call to a method that is a member of

object occurs only after the current thread has successfully entered object’s

monitor.

Here is an alternative version of the preceding example, using a

synchronized block within the run() method:

// This program uses a synchronized block.

class Displaymessage

{

void display(String msg)

{

System.out.print("[" + msg);

try

{

Thread.sleep(1000);

 } catch (InterruptedException e)

 {

 System.out.println("Interrupted");

 }

System.out.println("]");

}

}

class Caller implements Runnable

{

String msg;

Displaymessage target;

Thread t;

public Caller(Displaymessage targ, String s)

Multithreaded Programming

NOTES

Self-Instructional Material

122

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

{

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run()

{

synchronized(target) { // synchronized block

target.display(msg);

}

}

}

class SynchBlockDemo

{

public static void main(String args[])

{

Displaymessage target = new Displaymessage();

Caller ob1 = new Caller(target, "This");

Caller ob2 = new Caller(target, "is");

Caller ob3 = new Caller(target, "Synchronized");

Caller ob4 = new Caller(target, ”Example”);

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

ob4.t.join();

} catch(InterruptedException e)

{

 System.out.println("Interrupted");

}

}

}

The synchronized statement is used inside Caller’s run() method.

The output of the program is as follows:

[This][is][Synchronized][Example]

Messaging

After you divide your program into separate threads, you need to define how they

will communicate with each other. When programming with most other

languages, you must depend on the operating system to establish communication

between threads. This, of course, adds overhead.

Multithreaded programming

NOTES

Self-Instructional Material

123

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

By contrast, Java provides a clean, low-cost way for two or more threads to talk to

each other, via calls to predefined methods that all objects have. Java’s messaging

system allows a thread to enter a synchronized method on an object, and then wait

there until some other thread explicitly notifies it to come out.

Inter-Thread Communication

Java provides a very efficient way through which multiple-threads can

communicate with each-other. This way reduces the CPU’s idle time i.e. A

process where, a thread is paused running in its critical region and another thread

is allowed to enter (or lock) in the same critical section to be executed. This

technique is known as Inter-thread communication which is implemented by

some methods.

These methods are defined in "java.lang" package and can only be called within

synchronized code shown as:

class Shared

{

int num=0;

boolean value = false;

synchronized int get() {

 if (value==true)

 try {

 wait();

 }

 catch (InterruptedException e)

 {

 System.out.println("InterruptedException caught");

 }

System.out.println("consume: " + num);

value=false;

notify();

return num;

}

synchronized void put(int num)

{

 if (value==true)

 try {

 wait();

 }

 catch (InterruptedException e)

 {

 System.out.println("InterruptedException caught");

 }

 this.num=num;

 System.out.println("Produce: " + num);

 value=false;

Multithreaded Programming

NOTES

Self-Instructional Material

124

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

 notify();

 }

 }

class Producer extends Thread {

 Shared s;

 Producer(Shared s) {

 this.s=s;

 this.start();

 }

 public void run() {

 int i=0;

 s.put(++i);

 }

}

class Consumer extends Thread

{

 Shared s;

 Consumer(Shared s)

{

 this.s=s;

 this.start();

 }

 public void run() {

 s.get();

 }

}

public class InterThreadComm

{

 public static void main(String[] args)

 {

 Shared s=new Shared();

 new Producer(s);

 new Consumer(s);

 }}

Output:

Produce : 1

Consumes :1

In this program, two threads "Producer" and "Consumer" share the

synchronized methods of the class "Shared". At time of program execution, the

"put()" method is invoked through the "Producer" class which increments the

variable "num" by 1. After producing 1 by the producer, the method "get()" is

invoked by through the "Consumer" class which retrieves the produced number

and returns it to the output. Thus the Consumer can't retrieve the number without

producing of it.

Multithreaded programming

NOTES

Self-Instructional Material

125

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

wait() method

 the wait() method causes a thread to release the lock it is holding on an

object; allowing another thread to run

 the wait() method is defined in the Object class

 wait() can only be invoked from within synchronized code

 it should always be wrapped in a try block as it throws IOExceptions

 there are actually three wait() methods

1. wait()

2. wait(long timeout)

3. wait(long timeout, int nanos)

 the timeout is measured in milliseconds

 nanos is measured in nanoseconds

 wait() can only invoked by the thread that own's the lock on the object

 when wait() is called, the thread becomes disabled for scheduling and

lies dormant until one of four things occur:

1. another thread invokes the notify() method for this object and

the scheduler arbitrarily chooses to run the thread

2. another thread invokes the notifyAll() method for this object

3. another thread interrupts this thread

4. the specified wait() time elapses

 when one of the above occurs, the thread becomes re-available to the

Thread scheduler and competes for a lock on the object

 once it regains the lock on the object, everything resumes as if no

suspension had occurred

 if the thread was interrupted by another thread, an

InterruptedException is thrown BUT not until after the thread regains

it's lock on the object

notify() and notifyAll() Methods

 the notify() and notifyAll() methods are defined in the Object class

 they can only be used within synchronized code

 notify() wakes up a single thread which is waiting on the object's lock

 if there is more than one thread waiting, the choice is arbitrary i.e. there

is no way to specify which waiting thread should be re-awakened

 notifyAll() wakes up ALL waiting threads; the scheduler decides which

one will run

 if there are no waiting threads, the notify’s are forgotten

 only notifications that occur after a thread has moved to wait state will

effect it; earlier notifies are irrelevant

Deadlock

A situation where a thread is waiting for an object lock that holds by second

thread, and this second thread is waiting for an object lock that holds by first

thread, this situation is known as Deadlock.

Multithreaded Programming

NOTES

Self-Instructional Material

126

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Suspending, Resuming, and Stopping Threads

The Thread class has a method suspend() to temporarily halt the thread and

resume() that re-starts it at the point it was halted. A program used suspend()

and resume(), which are methods defined by Thread, to pause and restart the

execution of a thread. They have the form shown below:

final void suspend()

final void resume()

The Thread class also defines a method called stop() that stops a thread. Its

signature is shown here:

final void stop()

Once a thread has been stopped, it cannot be restarted using resume().

10.11 Creating a Thread by Implementing Runnable

 Interface

Steps for creating Thread by implementing runnable interface

1. A Class implements the Runnable Interface, override the run()

method to define the code executed by thread. An object of this

class is Runnable Object.

2. Create an object of Thread Class by passing a Runnable object as

argument.

3. Invoke the start() method on the instance of the Thread class.

To implement Runnable, a class need only implement a single method

called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is

important to understand that run() can call other methods, use other

classes, and declare variables, just like the main thread can. The only

difference is that run() establishes the entry point for another, concurrent

thread of execution within your program. This thread will end when run()

returns.

After you create a class that implements Runnable, you will instantiate an

object oftype Thread from within that class. Thread defines several

constructors. The one that you will use is shown here:

Thread(Runnable threadOb, String threadName)

Multithreaded programming

NOTES

Self-Instructional Material

127

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

In this constructor, threadOb is an instance of a class that implements the

Runnable

interface. This defines where execution of the thread will begin. The name

of the new thread is specified by threadName.

After the new thread is created, it will not start running until you call its

start() method, which is declared within Thread. In essence, start()

executes a call to run().

The start() method is shown here:

void start()

Example : To create new thread by implementing Runnable Interface

class MyThread1 implements Runnable

{

 Thread t;

 String s=null;

 MyThread1(String s1)

{

 s=s1;

 t=new Thread(this);

 t.start();

 }

 public void run()

{

 System.out.println(s);

 }

}

public class RunableThread

{

 public static void main(String args[])

{

 MyThread1 m1=new MyThread1("Thread started....");

 }

}

10.12 Check Your Progress Questions

1) What are various states of a Thread? Explain.

2) What is synchronization?

Multithreaded Programming

NOTES

Self-Instructional Material

128

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

10.13 Answers to Check Your Progress Questions

1. runnable, new, not-runnable, terminated

2. When two or more threads need access to a shared resource, they

need some way to ensure that the resource will be used by only one

thread at a time. The process by which this is achieved is called

synchronization.

10.14 Summary

A thread is a lightweight process which exists within a program and

executed to perform a special task. It has four states namely new, runnable,

not-runnable and terminated. Threads can be implemented by extending

thread class and implementing runnable interface. Thread has various

priorities such as normal, maximum and minimum.

10.15 Key Words

 A thread is a lightweight process which exists within a program

and executed to perform a special task

 Deadlock A situation where a thread is waiting for an object lock

that holds by second thread, and this second thread is waiting for an

object lock that holds by first thread, this situation is known as

Deadlock.

10.16 Self-Assessment Questions and Exercises

1) What is multitasking?

2) Define thread.

3) Write short note on main() thread.

4) Explain the ways to create a new thread. Explain.

5) What is multithreading?

6) What are the merits of multithreading?

7) Write a java program to illustrate multithreading.

8) Write short note on isAlive() and join() methods.

9) What are Thread Priorities? Explain how to assign priorities to threads.

10) Write shot note on thread scheduler.

11) Briefly explain how synchronization is achieved in java.

12) Write short note on Messaging.

Multithreaded programming

NOTES

Self-Instructional Material

129

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

13) Briefly explain the concept of inter-thread communication

14) Write short note on wait(),notify() and notifyAll() methods.

15) Define deadlock

16) How to suspend résumé and stop threads? Explain.

10.17 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java Programming,

New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

130

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

UNIT 11

MANAGING ERROR, EXCEPTIONS

AND

GRAPHICS PROGRAMMING

Structure
11.1 Introduction

11.2 Objectives

11.3 Types of errors

11.4 Exceptions

11.4.1Syntax of Exception Handling code

11.4.2Multiple Catch statements

11.4.3Using finally statement

11.4.4Throwing our own Exceptions

11.4.5Using exceptions for Debugging

11.5Graphics Programming

11.5.1The Graphics Class

11.5.2Drawing Lines,Rectangle,Circles,Ellipses,Arcs and

Polygons

11.5.3 Line Graphs

11.5.4Using Control Loops in Applets

11.5.5Drawing Bar Charts.

11.6Check Your Progress Questions

11.7Answers to Check Your Progress Questions

11.8Summary

11.9Key Words

11.10Self-Assessment Questions and Exercises

11.11Further Readings

11.1 Introduction

Writing an error-free code is a concern of programmers. The presence of

errors leads to undesirable results. To avoid unwanted termination of

program execution, exception handling is required to identify and handle

errors. This unit will discuss about various types of errors and the ways to

handle exceptions.

11.2 Objectives

After going through the unit you will be able to;

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

131

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 Learn various types of errors

 Understand exception handling mechanism

 Name some common names of exceptions

 Know about graphics programming

11.3 Types of Errors

Though it is the dream of every programmer to write error –free programs,

it is not so normally. This is because the programmer has not anticipated

all possible situations that might occur while running the program. The

errors might be due to a programming mistake, bad input data, corrupted

files etc. It is necessary to take care about these situations. Hence java

introduces Exception Handling. Errors are generally classified into compile

time error and run-time errors.

11.4 Exceptions

An exception is an event, which occurs during the execution of a program

that disrupts the normal flow of the program's instructions. When an error

occurs within a method, the method creates an object and hands it off to

the runtime system. The object, called an exception object, contains

information about the error, including its type and the state of the program

when the error occurred. Creating an exception object and handing it to the

runtime system is called throwing an exception. After a method throws an

exception, the runtime system attempts to find something to handle it. Java

programs have the following advantages.

1. It helps to separate the error handling code from the regular source

code.

2. It prevents the program from automatically terminating.

3. The run time system searches backwards through the call stack,

beginning with the method in which the error occurred, until it finds a

method that contains an appropriate exception handler.

A Java exception is an object. Exceptions can be generated by the Java

run-time system, or they can be manually generated by your code. They are

instances of classes that inherit from the class called Throwable.

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

132

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Exception Types

All exception types are subclasses of the built-in class Throwable. Thus,

Throw ableis at the top of the exception class hierarchy. Throwable are

two subclasses.

 Object

 |

 Throwable

 |

 | |

 Error Exception

 |

 RuntimeException

 |

 | | | | | |

One is headed by Exception. This class is used for exceptional conditions

that user programs should catch. This is also the class that you will

subclass to create your own custom exception types. There is an important

subclass of Exception, called RuntimeException. Exceptions of this type

are automatically defined for the programs that you write and include

things such as division by zero and invalid array indexing.

The other is Error, which defines exceptions that are not expected to be

caught under normal circumstances by your program. Exceptions of type

Error are used by the Java run-time system to indicate errors having to do

with the run-time environment, itself. This unit will dealing with

exceptions of type Exception.

RuntimeExceptions are those exceptions that occur with in the java

runtime system. This includes arithmetic exceptions(such as when dividing

by zero).Runtime exceptions can occur anywhere in a program and in a

typical program can be very numerous.

Java exception handling is managed via five keywords: They are try,

catch, throw, throws, and finally.

 Program statements that you want to monitor for exceptions are

contained within a try block. If an exception occurs within the try

block, it is thrown. Your code can catch this exception (using

catch) and handle it in some rational manner.

 To manually throw an exception, use the keyword throw.

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

133

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

 Any exception that is thrown out of a method must be specified as

such by a throws clause.

 Any code that absolutely must be executed before a method returns

is put in a finally block.

11.4.1 Syntax of Exception Handling code

This is the general form (syntax) of an exception-handling block:

try

{

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {

 // exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {

 // exception handler for ExceptionType2

}

 // ...

finally

{

// block of code to be executed before try block ends

}

Here, ExceptionType is the type of exception that has occurred.

Using try and catch

To guard against and handle a run-time error, simply enclose the code that

youwant to monitor inside a try block. Immediately following the try

block, includes a catch clause that specifies the exception type that you

wish to catch.

Syntax :

try{

 ………

 ………

}

catch(<exceptionclass1> <obj1>){

 ………

 ………

}

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

134

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

For Example,

class Excep {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

 }catch (ArithmeticException e) { // catch divide-by-zero

error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

Output :

Division by zero.

After catch statement.

Notice that the call to println() inside the try block is never executed.

Once an exception is thrown, program control transfers out of the try block

into the catch block. Once the catch statement has executed, program

control continues with the next line in the program following the entire

try/catch mechanism.

11.4.2 Multiple Catch statements

There may be situations where more than one exception could be raised by

a single piece of code. To handle this type of situation, you can specify two

or more catch clauses, each catching a different type of exception.

Syntax

try{

………

………

}

catch(<exceptionclass_1> <obj1>)

{

//statements to handle the exception

}

catch(<exceptionclass_2> <obj2>)

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

135

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

{

//statements to handle the exception

}

catch(<exceptionclass_N> <objN>)

{

//statements to handle the exception

}

 For Example,

public class Multi_Catch

{

 public static void main (String args[])

 {

 int array[]={20,10,30};

 int num1=15,num2=0;

 int res=0;

 try

 {

 res = num1/num2;

 System.out.println("The result is" +res);

 for(int ct =2;ct >=0; ct--)

 System.out.println("The value of array are" +array[ct]);

 }catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Error…. Array is out of Bounds");

 }catch (ArithmeticException e) {

 System.out.println ("Can't be divided by Zero");

 }

 }

 }

Output

Can't be divided by Zero

11.4.3 Using finally statement

Other than exception handling the finally clause helps you in avoiding any

cleanup code accidentally bypassed by a return etc. For example, if a

method opens a file upon entry and closes it upon exit, then you will not

want the code that closes the file to be bypassed by the exception-handling

mechanism. It is always a good practice to use finally clause after the try

and catch block because the finally block always executes even if an

unexpected exception occurs i.e. whether or not an exception thrown. The

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

136

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

finally block executes if and only if the try block exits. The statements

within the finally block gets executed by the runtime system without taking

care of what happens within the try block.

Note: The finally block will execute whether or not an exception is

thrown.

The finally clause is optional.

Each try statement requires at least one catch or a finally clause.

Finally block can be useful for closing file handles and freeing up any

other resources that might have been allocated at the beginning of a

method with the intent of disposing of them before returning.

Syntax:

try{

 ………

 ………

}

catch(<exceptionclass1> <obj1>){

 ………

 ………

}

finally{

 ………

 ………

}

The following example, whether the exception is occurred or not always

the finally statement is executed and its closes the file.

import java.io.*;

class Test{

public static void main(String args[])throws IOException {

FileInputStream fis=null;

try{

 fis = new FileInputStream (new File (args[0]));

}

catch (FileNotFoundException e){

System.out.println("File not found!");

}

finally{

 fis.close();}

}

}

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

137

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

11.4.4 Throwing our own Exceptions

It is possible for your program to throw an exception explicitly, using the

throw statement.

The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a

subclass ofThrowable. Simple types, such as int or char, as well as non-

Throwable classes, such as String and Object, cannot be used as

exceptions.

Here is a sample program that creates and throws an exception. The

handler thatcatches the exception rethrows it to the outer handler.

// Demonstrate throw.

class ThrowDemoprogram

{

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e)

 {

 System.out.println("Caught inside demoproc.");

 throw e; // rethrow the exception

 }

}

public static void main(String args[])

{

try {

demoproc();

} catch(NullPointerException e)

{

 System.out.println("Recaught: " + e);

}

}

}

Output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

138

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Using ‘throws’

‘throws’ clause is used when a method is capable of causing an exception

that it does not handle, it must specify this behavior so that callers of the

method can guard themselves against that exception. This is the general

form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list{

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a

method can throw.

Example :

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e); }

}

}

output generated by running this example program:

inside throwOne

caught java.lang.IllegalAccessException: demo

Difference between throw and throws keywords

Whenever you want to force an exception then you use

throwkeyword. The throw keyword (note the singular form) is used to

force an exception. It can also pass a custom message to your exception

handling module. Moreover throw keyword can also be used to pass a

custom message to the exception handling module i.e. the message which

you want to be printed. For instance in the above example you have used -

throw new MyException ("can't be divided by zero");

Whereas when you know that a particular exception may be thrown or to

pass a possible exception then you use throws keyword. Point to note here

is that the Java compiler very well knows about the exceptions thrown by

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

139

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

some methods so it insists us to handle them. You can also use

throwsclause on the surrounding method instead of try and catch

exception handler.

Creating custom defined (Your Own) Exception Subclasses

You can code a class that defines an exception that is more appropriate and

that mechanism of handling exception is called Custom or User Defined

Exception. Just define a subclass of Exception (which is, of course, a

subclass of Throwable). There are two primary use cases for a custom

exception.

 Your code can simply throw the custom exception when something

goes wrong.

 You can wrap an exception that provides extra information by

adding your own message.

Example

import java.io.*;

import java.util.*;

class MyException extends Exception{

 private String nm="";

 public String getMessage(String s){

 nm=s;

 return ("you are not permitted to enter inside "+nm);

 }

}

public class ExcepDemo {

public static void main(String args[])throws MyException,IOException

{

 String temp="";

 try

 {

 String str="kumar";

 System.out.println("Enter your name");

 BufferedReader br=new BufferedReader(new

InputStreamReader(System.in));

 temp=br.readLine();

 if(!temp.equals(str))

 throw new MyException();

 else

 System.out.println("Welcome to Java world kumar");

 }

 catch(MyException e)

{

 System.err.println(e.getMessage(temp));

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

140

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 }

 catch(Exception e)

{

 System.err.println(e); }

 }

 }

Output :

Enter your name

senthil

you are not permitted to enter inside senthil

In this example you have created own exception class as MyException

that throws an exception and a function with argument as getMessage that

shows an exception message, if the user tries to enter the another name

which doesn't match with a particular predefined name. After

throwing exception the control will be transferred in the catch block to

handle the exception, where the function is invoked to display the message

included in that function.

11.4.5 Using exceptions for Debugging

We can use exception for debugging and identifying bugs.Onecanthrow

Exception from code catch it and print stack trace this way. We can ensure

that program control is reaching till which point in my code and where is

actual problem.

11.5 Graphics Programming

Java programming provides various functionalities to perform graphics

applications. There are so many ways to create graphics. The simple way is

to use java.awt.Graphics and java.awt.Canvas.Canvas is an rectangular

area where the pictures are drawn.

11.5.1 The Graphics Class

The java.awt.Graphics class provides methods to draw various graphics

and manage fonts and colors. It is the abstract super class for all graphics.

The following are example few methods of graphics class.

drawLine(x1,y1,x2,y2) method is used to draw a line from (x1,y1) to

(x2,y2).

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

141

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

drawRect(x1,y1,width,height) draws a rectangle.

 fillRect(x1,y1,width,height) draws a filled rectangle.

 drawOval(x1,y1,width,height) draws an oval shape.

 fillOval(x1,y1,width,height) draws a filled Oval.

 setBackground(c) sets the background color,

 setColor(c) sets the text color

11.5.2 Drawing Lines, Rectangle, Circles, Ellipses, Arcs and

Polygons

The java.awt.Graphics class provides various methods for displaying

output primitives such as lines, rectangle, circle, ellipse, arcs and polygons.

For example;

import java.awt.*;

import java.applet.*;

public class drawShapes extends Applet

{

// this is for drawPolygon

int xs[] = {40,49,60,70,57,40,35};

int ys[] = {260,310,315,280,260,270,265};

// this is for fillPolygon

int xss[] = {400,150,180,200,170,150,140};

int yss[] = {260,310,315,280,260,270,265};

public void paint(Graphics g)

{

 g.drawString("Some of the drawing objects", 40,20);

 g.drawLine(40,30,200,30);

 g.drawRect(40,60,70,40);

 g.fillRect(140,60,70,40);

 g.fillRoundRect(240,60,70,40,10,20);

 g.fillRoundRect(40,120,70,40,10,20);

 g.drawOval(240,120,70,40);

 g.fillOval(40,180,70,40);

 g.drawArc(140,180,70,40,0,180);

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

142

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 g.fillArc(240,180,70,40,0,-180);

 g.drawPolygon(xs,ys,7);

 g.fillPolygon(xss,yss,7);

}

}

Output

11.5.3 Line Graphs

Line graph is a graphic which has a series of points connected based on

origin and (x,y) coordinates.One axis of the chart plots categories and the

other axis represents the value scale. It is used to visualize the value with

time or other variables. Java.awt. packages provides methods to support

drawing line graphs.

11.5.4 Using Control Loops in Applets

Control loops such as for,while and do-while are statements which are used

to control the statements in applets. For example the following program

illustrate the use of for loop to display welcome applet four times.

import java.awt.*;

import java.applet.*;

/* <applet code="TestApplet" width=200 height=60>

</applet> */

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

143

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

public class TestApplet extends Applet {

public void paint(Graphics g) {

 for (int i=1;i<=4;i++){

g.drawString("Welcome to Applet", 20, 20);

}}

}

11.5.5 Drawing Bar Charts.

A bar chart represents quantitative information. The chart consists of

horizontal bars of equal width with lengths proportional to the values they

represent, something that aids in instant comparison of data. One axis of

the chart plots categories and the other axis represents the value scale. For

example.

import java.applet.*;

import java.awt.*;

/*

<applet code="Bargraph.class" width =500 height =400>

<param name="time1" value ="2">

<param name="time2" value ="3">

<param name="time3" value ="4">

<param name="time4" value ="5">

<param name="time5" value ="6">

<param name="temperature1" value ="35">

<param name="temperature2" value ="36">

<param name="temperature3" value ="40">

<param name="temperature4" value ="39">

<param name="temperature5" value ="38">

</applet>

/*

public class Bargraph extends Applet

{

int n;

String ttime[];

int value[];

ttime[0] = getParameter("time1");

ttime[1] = getParameter("time2");

ttime[2] = getParameter("time3");

ttime[3] = getParameter("time4");

ttime[4] = getParameter("time5");

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

144

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

value[0]= Integer.parseInt(getParameer("temperature1"));

value[1]= Integer.parseInt(getParameer("temperature2"));

value[2]= Integer.parseInt(getParameer("temperature3"));

value[3]= Integer.parseInt(getParameer("temperature4"));

value[4]= Integer.parseInt(getParameer("temperature5"));

}

public void paint(Graphics g)

{

Font font = new Font("Arial",Font.BOLD,15);

g.setFont(font);

for(int i=0;i<n;i++)

{

g.setColor(Color.BLUE);

g.drawString(year[i],20,i*50+30);

g.setColor(Color.RED);

g.fillRect(70,i*50+10,value[i],40);

g.drawString(String.valueOf(value[i]+"%",180,i*50+35);

}

String msg="Bar Chart";

g.setColor(Color.darkGray);

font=new Font("Arial",Font.BOLD,20);

g.setFont(font);

g.drawString(msg,50,300);

}

}

11.6 Check Your Progress Questions

1) What is an Exception?

2) List predefined exceptions.

11.7 Answers to Check Your Progress Questions

1. An exception is an event, which occurs during the execution of a

program that disrupts the normal flow of the program's instructions.

2. Arithmetic Exception, IndexOutofBoundsException and

 IllegalAccessException

Managing error, exceptions and

graphics programming

NOTES

Self-Instructional Material

145

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

11.8 Summary

Errors are generally classified into compile time error and run-time errors.

An exception is an event, which occurs during the execution of a program

that disrupts the normal flow of the program's instructions.

When an error occurs within a method, the method creates an object and

hands it off to the runtime system.

11.9 Key Words

 Throws – This is used when a method is capable of causing an

exception that it does not handle, it must specify this behavior so

that callers of the method can guard themselves against that

exception.

 finally - This block can be useful for closing file handles and

freeing up any other resources that might have been allocated at the

beginning of a method with the intent of disposing of them before

returning.

11.10 Self-Assessment Questions and Exercises

1) What are the advantages of handling exception?

2) What are the types of exceptions?

3) Write a simple program to illustrate exception handling in java using try

and catch.

4) What is the use of finally clause? Give examples

5) Write short note on uncaught exceptions

6) Briefly explain about nested try statements.

7) What is the use of throw keyword? Explain with suitable example.

8) What is the use of throws keyword? Explain with suitable example.

9) Distinguish between throw and throws keyword.

11.11 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java Programming,

New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

Managing error, exceptions

 and graphics programming

NOTES

Self-Instructional Material

146

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998

Applet Programming

NOTES

Self-Instructional Material

147

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

UNIT 12

APPLET PROGRAMMING

Structure

12.1 Introduction

12.2 Objectives

12.3How applets differ from Applications

12.4Preparing to write applets

12.5 Building Applet Code

12.6Applet life cycle

12.7 Creating an Executable Applet

12.8Designing a Web Page

12.9Running the Applet

12.10 Passing parameters to Applets

12.11Displaying Numerical values

12.12 Getting input from the user

12.13 Check Your Progress Questions

12.14 Answers to Check Your Progress Questions

12.15 Summary

12.16 Key Words

12.17 Self-Assessment Questions and Exercises

12.18 Further Readings

12.1 Introduction

Java implements two types of programs namely console operated

program(applications) which discussed so far and applet program. Applet

is a small program typically embedded with in a web page to create

dynamic and interactive web applications and runs under any java enabled

browser. Java applets have various states such as init, start, stop, paint and

destroy. This chapter you will be able to learn about applet fundamentals.

12.2 Objectives

After going through the unit you will be able to;

 Learn how to write applet programs

 Understand the difference between applets and other applications

Applet Programming

NOTES

Self-Instructional Material

148

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 Know the life cycle of an applet

 Design a web page to invoke applets

 Learn the ways of executing applets

12.3 How applets differ from Applications

Two types of Programs you can do with java. They are application

programs and Applet programs. All of the preceding examples in this book

have been Java applications... Another type of program is the applet.

Applets are applications that are accessed on an Internet server. An applet

is a java program that can be embedded in a web page. Applets are run on

any browser that supports java.

Java Applets has certain limitations,

 They cannot load or run any program stores on the user’s system.

 They cannot read or write files on the user’s system

12.4 Preparing to write applets

An applet displays information on the screen by using paint () method.

This method is from java.awt.Component class. This method takes an

instance of the Graphics class. Graphics class provides various methods to

display information.

NOTE

1. All applets are subclasses of the Applet class in the

java.applet.package.

2. All applets must be declared public.

3. Applets do not begin execution at main ().

4. Applets do not have main() method

5. User I/O is not accomplished with Java’s stream I/O classes.

Instead, Applets use the interface provided by the AWT.

12.5 Building an Applet code

Let’s begin with the simple applet shown here:

import java.awt.*;

import java.applet.*;

public class TestApplet extends Applet {

Applet Programming

NOTES

Self-Instructional Material

149

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

public void paint(Graphics g) {

g.drawString("Welcome to Applet", 20, 20);

}

}

This applet begins with two import statements. The first imports the

Abstract Window Toolkit (AWT) classes. Applets interact with the user

through the AWT, not through the console-based I/O classes. The second

import statement imports the applet package, which contains the class

Applet.

The next line in the program declares the class TestApplet. This class

must bedeclared as public, because it will be accessed by code that is

outside the program.Inside TestApplet, paint() is declared. This method

is defined by the AWTand must be overridden by the applet. paint() is

called each time that the appletmust redisplay its output. Whatever the

cause, whenever the applet must redraw its output, paint() is called. The

paint() method has one parameter of type Graphics.

Inside paint() is a call to drawString(), which is a member of the

Graphics class.This method outputs a string beginning at the specified

X,Y location. It has thefollowing general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window,

the upper-leftcorner is location 0,0. The call to drawString() in the applet

causes the message “A Simple Applet” to be displayed beginning at

location 20,20.Instead, an applet begins execution when the name of its

class is passed to an applet viewer or to a network browser.

After you enter the source code for TestApplet, compile in the same way

thatyou have been compiling programs. However, running TestApplet

involves adifferent process.

12.6 Applet Life Cycle

In java, java.applet.Applet class has four methods defines the lifecycle of

the servlets, They are,

public void init();

public void start();

public void stop();

public void destroy();

Applet Programming

NOTES

Self-Instructional Material

150

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The init() method is called exactly once in an applet's life, when the applet

is first loaded. It's normally used to read PARAM tags, start downloading

any other images or media files you need, and set up the user interface.

The start() method is called at least once in an applet's life, when the

applet is started or restarted. A start() method is often used to start any

threads the applet will need while it runs.

The stop() method is called at least once in an applet's life, when the

browser leaves the page in which the applet is embedded. The applet's

start() method will be called if at some later point the browser returns to

the page containing the applet. In some cases the stop() method may be

called multiple times in an applet's life.. Your applet should use the stop()

method to pause any running threads.

The destroy() method is called exactly once in an applet's life, just before

the browser unloads the applet. This method is generally used to perform

any final clean up. For example, an applet that stores state on the server

might send some data back to the server before it's terminated.

12.7 Creating executable Applet

To create an executable applet, compile the applet .java extension file

using javac.exe file. For ex: javac myapplet.java. The result of compilation

generates myapplet.class file.

12.8 Designing a Web Page HTML file

In fact, there are two ways in which you can run an applet:

■ Executing the applet within a Java-compatible Web browser using

HTML file.

■ Using an applet viewer, such as the standard SDK tool, appletviewer.

Using web browser to view Applet

Applet Tag

In order to view the applet in a Web browser, you need to write a short

HTML text file. This code contains the APPLET tag. For example,

TestApplet :

 <html>

<applet code="TestApplet" width=200 height=60>

Applet Programming

NOTES

Self-Instructional Material

151

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

</applet>

</html>

The width and height statements specify the dimensions of the display

area usedby the applet. After you create this file, you can execute your

browser and then load this file, which causes TestApplet to be executed.

12.9 Running the applet

We can run the applet either using html file or appletviewer.

To execute TestApplet with an applet viewer, you may also execute the

HTMLFor example, if the preceding HTML file is called RunApp.html,

then the following command line will run TestApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up

testing.

Note :

You can also include a comment at the head of your Java source code file

that contains theAPPLET tag. If you use this method, the TestApplet

source file looks like this:

import java.awt.*;

import java.applet.*;

/* <applet code="TestApplet" width=200 height=60>

</applet> */

public class TestApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("Welcome to Applet", 20, 20);

}

}

Now, Execute the applet viewer, specifying the name of your applet’s

source file. Theapplet viewer will encounter the APPLET tag within the

comment and executeyour applet.

Applet Programming

NOTES

Self-Instructional Material

152

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Output :

12.10Passing Parameters to Applets

Parameters are passed to applets in <PARAM> tags between the opening

and closing APPLET tags. Inside the applet, you read the values passed

through the PARAM tags with the getParameter() method of the

java.applet.Applet class. For example

import java.applet.*;

import java.awt.*;

 public class ParameterEx extends Applet {

 private String strDefault = "Myfirst Java Applet.";

 public void paint(Graphics g) {

 String str = this.getParameter("Message");

 if (str == null) str = strDefault;

 g.drawString(str, 50, 25); }

}

HTML CODE :

<HTML>

<TITLE>Passing Parameter in Java Applet</TITLE>

<BODY>

This is the My applet:<P>

<APPLET code="ParameterEx.class" width="500" height="200">

<PARAM name="message" value="Passing parameter example.">

</APPLET>

</BODY>

</HTML>

http://www.roseindia.net/java/example/java/applet/appletParameter.shtml

Applet Programming

NOTES

Self-Instructional Material

153

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

To run the program using appletviewer, go to command prompt and type

appletviewer appletParameter.html Appletviewer will run the applet for

you.

12.11 Displaying Numerical values

Here is an example program to display numbers from 1 to 100 using

applet.

/* <applet code=Print1To100Num.class height=300 width=250>

</applet>*/

import java.awt.*; // import awt package

import java.applet.*; // import applet package

public class Print1To100Num extends Applet

{

 public void paint(Graphics g)

 {

 for(int i=1;i<=100;i++)

 {

g.drawString(i+"",20,10*i); // display message on applet

 }

 }

}

12.12 Getting input from the user

Applets work in a graphical environment . Therefore , applets treat

inputs as text strings .

import java.awt.*;

import java.applet.*;

public class GettingInputfromtheUserEx extends Applet

{

 TextField t1, t2;

 public void init()

 {

 t1 = new TextField(10);

 t2 = new TextField(10);

 add(t1);

 add(t2);

 t1.setText("0");

 t2.setText("0");

Applet Programming

NOTES

Self-Instructional Material

154

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 }

 public void paint(Graphics g)

 {

 int a=0,b=0,c=0;

 String str1,str2,str;

 g.drawString("Enter the number in each box",10,50);

 try

 {

 str1=t1.getText();

 a=Integer.parseInt(str1);

 str2=t2.getText();

 b=Integer.parseInt(str2);

 }

 catch(Exception e){ }

 c=a+b;

 str=String.valueOf(c);

 g.drawString(“a =”,10,15);

 g.drawString(a,20,75);

 g.drawString(“b =”,30,15);

 g.drawString(b,40,75);

 g.drawString("Sum is",50,15);

 g.drawString(str,100,75);

 }

}

HTML CODE TO RUN APPLET

<HTML>

<HEAD>

 <TITLE>Getting Input from the User</TITLE>

</HEAD>

<BODY>

 <APPLET Code="GettingInputfromtheUserEx.class" Width=400

Height=300>

 </APPLET>

</BODY>

</HTML>

12.13 Check Your Progress Questions

1 What is an applet?

2 What does the <applet> tag specify?

Applet Programming

NOTES

Self-Instructional Material

155

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

12.14 Answers to Check Your Progress Questions

1. Applet is a small program typically embedded with in a web page

to create dynamic and interactive web applications and runs under

any java enabled browser.

2. The <applet> tag is used to specify the location of the executable

class file which invoke an applet.

12.15 Summary

Applet is a small program typically embedded with in a web page to create

dynamic and interactive web applications and runs under any java enabled

browser.In java, java.applet.Applet class has four methods defines the

lifecycle of the servlets, They are,public void init();public void

start();public void stop();public void destroy();

12.16 Key Words

 init() method is called exactly once in an applet's life, when the

applet is first loaded. It's normally used to read PARAM tags, start

downloading any other images or media files you need, and set up

the user interface.

 start() method is called at least once in an applet's life, when the

applet is started or restarted. A start() method is often used to start

any threads the applet will need while it runs.

 stop() method is called at least once in an applet's life, when the

browser leaves the page in which the applet is embedded. The

applet's start() method will be called if at some later point the

browser returns to the page containing the applet.

 destroy() method is called exactly once in an applet's life, just

before the browser unloads the applet. This method is generally

used to perform any final clean up.

Applet Programming

NOTES

Self-Instructional Material

156

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

12.17 Self-Assessment Questions and Exercises

1) Define Applet.

2) What are the limitations of Applet?

3) Write a simple program to illustrate Applet program.

4) How to define and invoke applets? Explain.

5) Discuss the life cycle of an Applet.

6) Briefly explain how parameters are passed to applet.

12.18Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java Programming,

New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998

 Introduction to Input / Output

Self-Instructional Material

157

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

NOTES

 BLOCK 5

 MANAGING INPUT/OUTPUT FILES

IN JAVA

UNIT 13

INTRODUCTION TO INPUT / OUTPUT

Structure

13.1 Introduction

13.2 Objectives

13.3Stream & Stream classes

13.3.1Byte stream classes

13.3.2Character Stream

13.4Check Your Progress Questions

13.5Answers to Check Your Progress Questions

13.6Summary

13.7Key Words

13.8Self-Assessment Questions and Exercises

13.9 Further Readings

13.1 Introduction

The Java Input/Output (I/O) is a part of java.io package. The java.io

package contains a relatively large number of classes that support input

and output operations. Java does provide strong, flexible support for I/O as

it relates to files and networks.

The classes in the java.io package are primarily abstract classes and

stream-oriented that define methods and subclasses which allow bytes to

be read from and written to files or other input and output sources. All data

in java is written and read using streams.

13.2 Objectives

After going through the unit you will be able to;

 Understand I/O streams

Introduction to Input / Output

NOTES

Self-Instructional Material

158

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 Learn about various stream classes

 Write program using Byte stream classes

 Able to understand about character stream classes

13.3Stream &Stream classes

Stream

Java programs perform I/O through streams. A stream is an abstraction that

either produces or consumes information. A stream is a path traveled by

data in a program A stream is linked to a physical device by the Java I/O

system. An input stream can abstract many different kinds of input: from a

disk file, a keyboard, or a network socket. Likewise, an output stream may

refer to the console, a disk file, or a network connection. Java implements

streams within class hierarchies defined in the java.io package.

Stream Classes

Java defines two types of streams:

 Byte streams

 Character streams.

13.1 Classification of stream classes

Byte streams provide a convenient means for handling input and output of

bytes. Byte streams are used, for example, when reading or writing binary

data.Character streams provide a convenient means for handling input and

output of characters.

These streams are declared in the java.lang.System class and they are all

byte streams. For example, using some of its methods, you can obtain the

current time and the settings of various properties associated with the

system. Systems also contain three predefined stream variables in, out,

and err. These fields are declared as public and static within System.

Stream
classes

Byte Stream
Classes

Input
stream
classes

Output
stream
classes

Character
stream
classes

Reader
Classes

Writer
Classes

 Introduction to Input / Output

Self-Instructional Material

159

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

NOTES This means that they can be used by any other part of your program and

without reference to a specific System object.

 System.out refers to the standard output stream. By default, this is

the console.

 System.in refers to standard input, which is the keyboard by

default.

 System.err refers to the standard error stream, which also is the

console by default.

Note: System.in is an object of type InputStream.

System.out and System.err are objects of type PrintStream.

For example Accepting input through keyboard Using standard Streams :

import java.io.*;

class stdin{

 Public static void main(String args[]){

 byte name = new byte[10];

 System.out.println(“What is your name?”);

 try{

 System.in.read(name);

 System.out.write(“Hello “+name);

 }catch(IOException e){

 System.out.println(“Error”);} }

}

13.3.1 Byte stream classes

To use the stream classes, you must import java.io.Byte streams are

defined by using two class hierarchies. At the top are two abstract classes:

InputStream and OutputStream. Each of these abstract classes has

several concrete subclasses.

The abstract classes InputStream and OutputStream define several key

methods that the other stream classes implement. Two of the most

important are read() and write(), which, respectively, read and write

bytes of data.

Input Steam

The InputStream class is used for reading the data such as a byte and

array of bytes from an input source. An input source can be a file, a string,

or memory that may contain the data

Introduction to Input / Output

NOTES

Self-Instructional Material

160

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

An input stream is automatically opened when you create it. You cans

explicitly close a stream with the close() method, or let it be closed

implicitly when the object is found as a garbage.

OutputStream

The OutputStream class is a sibling to InputStream that is used for

writing byte and array of bytes to an output source. Similar to input

sources, an output source can be anything such as a file, a string, or

memory containing the data.

You can explicitly close an output stream with the close() method, or let it

be closed implicitly when the object is garbage collected. The following

listings of classes are provided by the java.io package for byte stream

classes shown in the table 13.1:

Table 13.1 Byte stream classes

Class Description

BufferedInputStream contains methods to read bytes from the buffer

(memory area)

ByteArrayInputStream contains methods to read bytes from a byte

array

DataInputStream contains methods to read Java primitive data

types

FileInputStream contains methods to read bytes from a file

FilterInputStream contains methods to read bytes from other input

streams which it uses as its basic source of data

ObjectInputStream contains methods to read objects

PipedInputStream contains methods to read from a piped output

stream. A piped input stream must be connected

to a piped output stream

SequenceInputStream contains methods to concatenate multiple input

streams and then read from the combined

stream

13.3.2 Character Stream classes

Reader and Writer are the abstract super classes for character stream sin

java.io package. The abstract classes Reader and Writer define several

key methods that the other stream classes implement. Two of the most

important methods are read() and write(), which read and write

characters of data, respectively. The following listings of classes are

provided by the java.io package for character stream classes shown in the

table 13.2:

 Introduction to Input / Output

Self-Instructional Material

161

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

NOTES
Table 13.2 Character Stream classes

Class Description

BufferedReader contains methods to read characters from the buffer

CharArrayReader contains methods to read characters from a

character array

FileReader contains methods to read from a file

FilterReader contains methods to read from underlying

character-input stream

InputStreamReader contains methods to convert bytes to characters

PipedReader contains methods to read from the connected piped

output stream

StringReader contains methods to read from a string

The PrintWriter Class

The recommended method of writing to the console when using Java is

through a PrintWriter stream. PrintWriter is one of the character-based

classes. Using a character-based class for console output makes it easier to

internationalize your program. PrintWriter defines several constructors.

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream, and

flushOnNewline controls

whether Java flushes the output stream every time a println() method is

called. IfflushOnNewline is true, flushing automatically takes place. If

false, flushing is notautomatic.

PrintWriter supports the print() and println() methods for all types

includingObject. If an argument is not a simple type, the PrintWriter

methods call theobject’s toString() method and then print the result.

To write to the console by using a PrintWriter, specify System.out for the

outputstream and flush the stream after each newline. For example, this

line of code creates a PrintWriter that is connected to console output

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle

console output:

// Example PrintWriter

import java.io.*;

public class PrintWriterExample

Introduction to Input / Output

NOTES

Self-Instructional Material

162

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

{

public static void main(String args[])

{

PrintWriter pw = new PrintWriter(System.out, true);

pw.println("Hello Java world");

int i = 1000;

pw.println(i);

double d = 45.0;

pw.println(d);

}

}

Output:

Hello Java world

1000

45.0

Character Streams for Files

Character streams are used to work with any text using files The

FileReader and FileWriter classes are used for the text manipulation.

FileReader class

The FileReader class creates a Reader that you can use to read the

contents of a file. Its two most commonly used constructors are shown

here:

FileReader(String filePath)

FileReader(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full path

name of a file, and fileObj is a File object that describes the file.

The following example shows how to read lines from a file and print these

to the standard output stream. It reads its own source file, which must be in

the current directory.

// Example FileReader.

import java.io.*;

class FileReaderDemoPro

{

public static void main(String args[]) throws Exception

{

 FileReader fr = new FileReader("HELLO.java");

 BufferedReader br = new BufferedReader(fr);

 Introduction to Input / Output

Self-Instructional Material

163

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

NOTES String s1;

 while((s1 = br.readLine()) != null) {

 System.out.println(s1);

 }

 fr.close();

 }

}

FileWriter class

FileWriter creates a Writer that you can use to write to a file. Its most

commonly used constructors are shown here:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWriter(File fileObj)

They can throw an IOException or a SecurityException. Here, filePath is

the full path name of a file, and fileObj is a File object that describes the

file. If append is true, then output is appended to the end of the file.

Creation of a FileWriter is not dependent on the file already existing.

FileWriter will create the file before opening it for output when you create

the object. In the case where you attempt to open a read-only file, an

IOException will be thrown.

For Example the following program will copy a file from one to other.

// Example FileWriter.

import java.io.*;

class FileWriterDemotocopyfile

{

public static void main(String args[]) throws Exception

{

 File inputfile= new File("Hello.java");

 File outputfile = new File("Hello1.java");

 FileReader fr = new FileReader(inputfile);

 FileWriter fw = new FileWriter(outputfile);

 int c;

 while((c=fr.read()) != -1)

fw.write(c);

 fr.close();

 fw.close();

}

}

Introduction to Input / Output

NOTES

Self-Instructional Material

164

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

13.4 Check Your Progress Questions

1. What are the types of character classes?

2. Name the two class hierarchies of byte streams.

13.5 Answers to Check Your Progress Questions

1. Reader and Writer are the abstract super classes for character

stream sin java.io package.

2. Byte streams are defined by using two class hierarchies. At the top

are two abstract classes: InputStream and OutputStream.

13.6 Summary

A stream is a path traveled by data in a program A stream is linked to a

physical device by the Java I/O system.Java defines two types of streams

namely Byte streams and Character streams.

13.7 Key Words

 Stream A stream is an abstraction that either produces or consumes

information.

 System.out refers to the standard output stream. By default, this is

the console.

 System.in refers to standard input, which is the keyboard by

default.

 System.err refers to the standard error stream, which also is the

console by default.

13.8 Self-Assessment Questions and Exercises

1) What are streams?

2) What are predefined streams supported in java?

3) What are character streams? Explain about various character stream

classes.

4) What are Byte streams? Explain about byte stream classes with

examples.

 Introduction to Input / Output

Self-Instructional Material

165

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

NOTES

13.9 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java Programming,

New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998.

Input / Output classes

NOTES

Self-Instructional Material

166

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

UNIT 14

INPUT / OUTPUT (I/O) CLASSES

Structure

14.1 Introduction

14.2 Objectives

14.3Using stream

14.4 Using the file class

14.5Input / Output Exceptions

14.6 Creation of files

14.7Reading / writing characters

14.8Reading / writing bytes

14.9Random access files

14.10 Interactive input and output

14.11Check Your Progress Questions

14.12Answers to Check Your Progress Questions

14.13Summary

14.14Key Words

14.15Self-Assessment Questions and Exercises

14.16Further Readings

14.1 Introduction

Most of the real-life applications require a large amount of input and

output data, which is difficult to manage using the commonly used console

Input/Output (I/O) devices like keyboard and screen. Java supports input

and output of data through the classes included in the java.io package. This

unit will take you through the various aspects of input/output handling in

Java.

14.2 Objectives

After going through the unit you will be able to;

 Know using stream &the file class

 Learn about various Input / output Exceptions

 Understand how to create files

 Write programs for Reading / writing characters

 Write programs for Reading writing bytes

 Understand about Random access files

 Learn about Interactive input and output

 Input / Output Classes

 NOTES

Self-Instructional Material

167

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

14.3 Using Stream

A stream is an abstraction that either produces or consumes information.

The following listings of classes are provided by the java.io package

tabulated in Table 13.3

Table 13.3 java.io.package classes

 Class Description

 BufferedInputStream It used for creating an internal

buffer array. It supports the

mark and reset methods.

 BufferedOutputStream This class used for writes byte to

output stream. It implements a

buffered output stream.

 BufferedReader This class provides read text

from character input stream and

buffering characters. It also

reads characters, arrays and

lines.

 BufferedWriter This class provides write text

from character output stream

and buffering characters. It also

writes characters, arrays and

lines.

 ByteArrayInputStream It contains the internal buffer

and read data from the stream.

 ByteArrayOutputStream This class used for data is

written into byte array. This is to

implement in output stream

class.

 CharArrayReader It used for char input stream and

implements a character buffer.

 CharArrayWriter This class also implements a

character buffer and it uses a

writer.

 DataInputStream This class reads the primitive

data types from the input stream

in a machine format.

 DataOutputStream This class writes the primitive

data types from the output

stream in machine format.

 File This class shows a file and

directory pathnames.

 FileDescriptor This class uses for create a

FileInputStream and

Input / Output classes

NOTES

Self-Instructional Material

168

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

FileOutputStream.

 FileInputStream It contains the input byte from a

file and implements an input

stream.

 FileOutputStream It uses for writing data to a file

and also implements an output

stream.

 FilePermission It provides the permission to

access a file or directory.

 FileReader This class used for reading

characters file.

 FileWriter This class used for writing

characters files.

 FilterInputStream This class overrides all methods

of InputStream and contains

some other input stream.

 FilterOutputStream This class overrides all methods

of OutputStream and contains

some other output stream.

 FilterReader It reads the data from the filtered

character stream.

 FilterWriter It writes data from the filtered

character stream.

 InputStream This class represents an input

stream of bytes.

 InputStreamReader It reads bytes and decodes them

into characters.

 LineNumberReader This class has a line numbers

 ObjectInputStream This class used for recover the

object to serialize previously.

 ObjectInputStream.GetField This class access to president

fields read form input stream.

 ObjectOutputStream This class used for write the

primitive data types and also

writes the object to read by the

ObjectInputStream.

 ObjectOutputStream.GetField This class access to president

fields write in to ObjectOutput.

 ObjectStreamClass Serialization's descriptor for

classes.

 ObjectStreamField This class describes the

serializable field.

 OutputStream This class represents an output

stream of bytes.

 OutputStreamWriter It writes bytes and decodes them

into characters.

 PipedInputStream In this class the data bytes are

written into piped output stream.

 Input / Output Classes

 NOTES

Self-Instructional Material

169

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

This class also connected into a

piped output stream.

 PipedOutputStream This class also communicates

the piped input stream into piped

output stream. It creates

communication between both.

 PipedReader It is a piped character-input

stream.

 PipedWriter It is a piped character-output

stream.

 PrintStream This class adds the functionality

of another output stream.

 PrintWriter This class adds the functionality

of another input stream.

 PushbackInputStream It also includes the function of

input stream. Such as: "push

back" or "unread" one byte.

 PushbackReader This is a character stream reader

and reads the data push back

into the stream.

 RandomAccessFile It supports both reading and

writing to a random access file.

 Reader It used for reading character

stream.

 SequenceInputStream It represents the logical

concatenation of other input

stream.

 SerializablePermission This is a serializable permission

class.

 StreamTokenizer It takes an input stream and

parses it into "tokens" . The

token to be allowed at the read

time.

 StringReader This is a character string class. It

has character read source.

 StringWriter This is also a character string

class. It uses to shows the output

in the buffer.

 Writer It uses for writing to character

stream.

14.4 Using ‘File’ class

The File class allows you to obtain and manipulate the information about a

file such as permissions, size, time and so on. Unlike the other classes of

java.io package, this class does not operate on the streams; it deals directly

Input / Output classes

NOTES

Self-Instructional Material

170

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

with the files and file system. That is, it does not specify how the data is

retrieved from or sent to the files. Using this class, you can also make new

directories, rename as well as delete the files.

A object can be created using any one of the following constructors;

 File(File parent, String child) : Creates a new File instance from a

parent abstract pathname and a child pathname string.

 File(String pathname) : Creates a new File instance by converting the

given pathname string into an abstract pathname.

 File(String parent, String child) : Creates a new File instance from a

parent pathname string and a child pathname string.

 File(URI uri) : Creates a new File instance by converting the given file:

URI into an abstract pathname.

The following program illustrates the file class to display files property;

class fileProperty

{

 public static void main(String[] args)

{

 //accept file name or directory name through command line args

 String fname =args[0];

 //pass the filename or directory name to File object

 File f = new File(fname);

 //apply File class methods on File object

 System.out.println("File name :"+f.getName());

 System.out.println("Path: "+f.getPath());

 System.out.println("Absolute path:" +f.getAbsolutePath());

 System.out.println("Parent:"+f.getParent());

 System.out.println("Exists :"+f.exists());

 if(f.exists())

 {

 System.out.println("Is writeable:"+f.canWrite());

 System.out.println("Is readable"+f.canRead());

 System.out.println("Is a directory:"+f.isDirectory());

 System.out.println("File Size in bytes "+f.length());

 }

 }

}

 Input / Output Classes

 NOTES

Self-Instructional Material

171

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Output

File name :file.txt

Path: file.txt

Absolute path:C:\Users\akki\IdeaProjects\codewriting\src\file.txt

Parent:null

Exists :true

Is writeable:true

Is readabletrue

Is a directory:false

File Size in bytes 20

14.5 Input / Output Exceptions

I/O exception occurs when an IO operation has failed for some reason. It is

also a checked exception which means that your program has to handle

it.IOException has many sub classes that are specific in nature. That

means, when your application searching to read a file, if the file is not

found that there is a FileNotFoundException to be thrown.

FileNotFoundException is a subclass of IOException.For

example;(FileNotFoundException)

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

/**

 * File Not Found Exception example

 * @author Krishna

 *

 */

public class JavaFileExample

{

 public static void main(String[] args)

{

 File file = new File("D:/JavaTest.txt");

 FileInputStream fileInputStream = null;

 try

{

 fileInputStream = new FileInputStream(file);

 while (fileInputStream.read()!=-1){

 System.out.println(fileInputStream.read());

 }

 }catch (FileNotFoundException e){

 e.printStackTrace();

 }catch (IOException e){

Input / Output classes

NOTES

Self-Instructional Material

172

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 e.printStackTrace();

 }finally{

 try{

 fileInputStream.close();

 }catch (IOException e)

{

 e.printStackTrace();

 }

 }

 }

}

The above program would throw an exception if the file “JavaText.txt” is

not in the mentioned path. You will get the following exception.

The java.io.Exceptions provides for system input and output through data

streams, serialization and the file system.

Data Streams

Data streams perform binary I/O operation on primitive data type values

(boolean, char, byte, short, int, long, etc.) as well as on String values. If

you need to work with data that is not represented as bytes or characters

then you can use Data Streams. These streams filter an existing byte stream

so that each primitive data types can be read from or written to the stream

directly. The two data streams are DataInputStream and

DataOutputStream.

The methods to read and write data inputs are,

Read Write

readBoolean() writeBoolean()

readByte() writeByte()

readDouble() writeDouble()

ReadFloat() writeFloat()

ReadLong() writeLong()

ReadShort() writeShort()

readInt() writeInt()

These input methods returns the primitive data type indicated by the name

of the method.

DataInputStream

A data input stream is created with the constructor of DataInputStream

class. The constructor of DataInputStream is written as:

 DataInputStream(java.io.InputStream in);

 Input / Output Classes

 NOTES

Self-Instructional Material

173

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The read() method is used to read the data according to its types. For

example, the readInt() method reads the int type of value while the

readFloat() method reads the fraction value. The readLine() Methods

reads the string per line from a file. for Example,

 import java.io.*;

public class DataIstr{

 pubic static void main(String args[]){

 try{

 FileInputStream file = new FileInputStream("e.dat")

 DataInputStream data = new DataInputStream(file);

 try{

 while{true){

 int in = data.readInt();

 System.out.print(in+" ");

 }

 }catch(EOFException eof){data.close();}

 }catch(IOException e){

 System.out.println("Error "e.toString()); }

 }}

DataOutputStream

It writes only Java primitive data types and doesn't write the object values.

A data output stream is created with the constructor of

DataOutputStream class. The constructor of DataOutputStream is written

as:

 DataOutputStream(java.io.OutputSrream out);

The write() method is used to write the data according to its types. For

example, the writeInt() method writes the int type of value while the

writeFloat() method writes the fraction value. The writeUTF() method

writes the string per line to a file. for example,

 import java.io.*;

public class DataOstr{

 pubic static void main(String args[]){

 try{

 FileInputStream file = new FileInputStream("e.dat")

 DataInputStream data = new DataInputStream(file);

 for(int i =0 ; i<50;i++)

 data.writeInt(i*2);

 data.close();

 }catch(IOException e)

{

 System.out.println("Error "+.toString()); }

Input / Output classes

NOTES

Self-Instructional Material

174

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 }

 }

14.6 Creation of files

Java provides a number of classes and methods that allow you to read and

write (create) files. In Java, all files are byte-oriented, and Java provides

methods to read and write bytes from and to a file. However, Java allows

you to wrap a byte-oriented file stream within a character-based object.

File Output Stream

A file Output stream can be created with the FileOutputStream(String)

constructor.

FileOutputStream(String fileName) throws FileNotFoundException

The String argument should be the name of the string. For output streams,

if the file cannot be created, then FileNotFoundException is thrown. To

write to a file, you will use the write() method defined by

FileOutputStream. Its simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although

byteval is declared as an integer, only the low-order eight bits are written to

the file. If an error occurs during writing, an IOException is thrown.

 When you are done with a file, you should close it by calling close().

 void close() throws IOException

The following program uses write() method to write to file .

import java.io.*;

public class WriteBytesDemo

{

 public static void main(String args[])

{

 int data[]={1,2,3,4,5,6,7,8,9,10};

 try{

 FileOutputStream file = new FileOutputStream("outfile");

 for(int i=0;i<data.length;i++)

 file.write(data[i]);

 file.close();

 }catch(IOException e){

 System.out.println("I/O Error ");

 Input / Output Classes

 NOTES

Self-Instructional Material

175

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 }

 }

 }

The following program uses write() method to write text to text file .

/* Write a text to text file.

import java.io.*;

public class WriteFile

{

 public static void main(String[] args) throws IOException

{

 File f=new File("writefile.txt");

 FileOutputStream fop=new FileOutputStream(f);

 if(f.exists())

 {

 String str="This data is written through the program";

 fop.write(str.getBytes());

 fop.flush();

 fop.close();

 System.out.println("The data has been written");

 }

 else

 System.out.println("This file is not exist");

 }

 }

File Input Streams

A file input stream can be created with FileInputStream Constructor.

FileInputStream(String fileName) throws FileNotFoundException

The String argument should be the name of the string. When you create an

input stream, if the file does not exist, then FileNotFoundException is

thrown. After you create a file input stream, you can read bytes from the

stream by calling its read() method.

 int read() throws IOException

The method returns an integer contain the next byte in the stream. If the

method returns -1 it identifies that the end of the file stream has been

reached. It can throw an IOException. When you are done with a file, you

should close it by calling close().

Input / Output classes

NOTES

Self-Instructional Material

176

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

void close() throws IOException

The following program uses read() to input and display the contents of a

file.

import java.io.*;

public class ReadBytesDemo{

public static void main(String args[]){

try{

 FileInputStream file = new FileInputStream("Hello.class");

 boolean eof= false;

 int c=0;

 while(!eof){

 int inp = file.read();

 System.out.println(input+" ");

 if(inp == -1) eof = true;

 else c++;

 }

 file.close();

 System.out.println("\n Output Bytes read :" "+c);

 }catch(IOException e){

 System.out.println("Error -- "+e.toString());

}

}

}

/* Read a text file. */

import java.io.*;

public class ReadFile{

 public static void main(String[] args) throws IOException{

 File f;

 f=new File("myfile.txt");

 if(!f.exists()&& f.length()<0)

 System.out.println("The specified file is not exist");

 else{

 FileInputStream finp=new FileInputStream(f);

 byte b;

 do{

 b=(byte)finp.read();

 System.out.print((char)b);

 }

 while(b!=-1);

 finp.close();

 }

 Input / Output Classes

 NOTES

Self-Instructional Material

177

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 }

 }

Output:

 My Text file contents are displayed here.

14.7 Reading / writing characters

Reading Characters

To read a character from a BufferedReader, use read(). The version of

read() that you will be using is int read() throws IOException. Each time

that read() is called, it reads a character from the input stream and returns

it as an integer value. It returns –1 when the end of the stream is

encountered. The following program demonstrates read() by reading

characters from the console until the user types a “q”:

// Use a BufferedReader to read characters from the console.

import java.io.*;

class BuffReader

{

public static void main(String args[]) throws IOException{

char c;

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter characters, 'q' to quit.");

do {

c = (char) br.read();

System.out.println(c);

 } while(c != 'q');

 }

}

Output:

Enter characters, 'q' to quit.

HELLOq

H

E

L

L

O

Input / Output classes

NOTES

Self-Instructional Material

178

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Reading Strings

To read a string from the keyboard, use the version of readLine() that is a

member ofthe BufferedReader class. Its general form is shown here:

String readLine() throws IOException

The following program reads and displays lines of text:

// Read a string from console using a BufferedReader.

import java.io.*;

 public class ReadStandardIOstring

{

 public static void main(String[] args) throws IOException

{

 InputStreamReader inp = new InputStreamReader(System.in)

 BufferedReader br = new BufferedReader(inp);

 System.out.println("Enter text : ");

 String str = in.readLine();

 System.out.println("You entered String : ");

 System.out.println(str);

 }

}

14.8 Reading / writing bytes

Reading bytes

The basic class in java.io to read data is java.io.InputStream. All classes

that read bytes are derived from this class. This class is extended by the

following classes.

FileInputStream

This stream reads raw bytes from a file. The read methods in this class

return a byte of data read from a file.

ObjectInputStream

This class is used to read objects written using ObjectOutputStream. It

deserializes the primitive data types and objects

PipedInputStream

 Input / Output Classes

 NOTES

Self-Instructional Material

179

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 A unix ‘pipe’ like implementation can be accomplished using this class. It

can connect to a pipedoutputsteam and read data off it.

BufferedInputStream

This is probably the most used class. It buffers the data from any of the

above inputstream. The methods in this class increase reading efficiency

since they try to read the maximum number of bytes that can be read from

the file system in one operation.

ByteArrayInputStream

This class contains a buffer(array) or bytes that store the next few bytes

that will be read from the stream.

Example :

import java.io.FileInputStream;

import java.io.InputStream;

public class InputStreamDemo {

 public static void main(String[] args) throws Exception {

 InputStream is = null;

 byte[] buffer = new byte[5];

 char c;

 try {

 // new input stream created

 is = new FileInputStream("C://testread.txt");

 System.out.println("Characters printed:");

 // read stream data into buffer

 is.read(buffer);

 // for each byte in the buffer

 for(byte b:buffer) {

 // convert byte to character

 c = (char)b;

 // prints character

 System.out.print(c);

 }

 } catch(Exception e) {

 // if any I/O error occurs

 e.printStackTrace();

 } finally {

 // releases system resources associated with this stream

Input / Output classes

NOTES

Self-Instructional Material

180

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 if(is!=null)

 is.close();

 }

 }

}

Writing bytes

All classes that write bytes extend java.io.OutputStream. The important

classes are:

FileOutputStream

The methods in this class write bytes of data to a file. Note that this writes

raw bytes and not characters.

ObjectOutputStream

It writes primitive java types and objects to an ouputstream. The data could

be written to a file or to a socket. Data written using this method can be

read back using the ObjectInputStream

PipedOutputStream

A piped output stream connects to aPipedInputStream to read bytes. Data

may be written by one thread and read by another.

BufferedOutputStream

It buffers data from an input stream and writes the buffered data. It is an

efficient method of writing data since the operating systems may write an

array of bytes in a single operation and invoking write operation for each

byte may be inefficient

PrintStream

It wraps an InputStream and adds functionality to print various

representations of data values. It never throws IOException and there is an

option for automatic flushing

ByteArrayOutputStream-This class writes bytes at an array of bytes.

14.9Using RandomAccessFile class

The RandomAccesFile class is used for reading and writing to random

access file. A random access file behaves like a large array of bytes. There

 Input / Output Classes

 NOTES

Self-Instructional Material

181

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

is a cursor implied to the array called file pointer, by moving the cursor we

do the read write operations. The constructors for the RandomAccessFile

class are;

RandomAccessFile(File file, String mode)

Creates a random access file stream to read from, and optionally to write

to, the file specified by the File argument.

RandomAccessFile(String name, String mode)

Creates a random access file stream to read from, and optionally to write

to, a file with the specified name.

Java provides java.io.RandomAccessFile class that enables you to perform

random access file input and output operations as opposed to sequential

file I/O offered by ByteStream and CharacterStream classes.

When a data file is opened for random read and write access, an internal

file pointer is set at the beginning of the file. When you read or write data

to the file, the file pointer moves forward to the next data item. For

example, when reading an in t value using readlnt() , 4 bytes are read from

the file and the file pointer moves 4 bytes ahead from the previous file

pointer position.

Similarly, when reading a double value using readDouble () , 8 byte are

read from the file pointer and the file pointer moves 8 bytes ahead from the

previous file pointer position.

import java.io.*;

class RandomFileExample

{

 public static void main(String[] args)

 {

 try

 {

 RandomAccessFile file = new RandomAccessFile("std.dat","rw");

 file.setLength(0);

 for(int i=0;i<50;i++)

 file.writeInt(i);

 System.out.println("Length of File After Writing Data is :

"+file.length());

 file.seek(0);

 System.out.println("First Number is : "+file.readInt());

 file.seek(1*4);

 System.out.println("Second Number is : "+file.readInt());

 file.writeInt(101);

Input / Output classes

NOTES

Self-Instructional Material

182

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 file.seek(file.length());

 file.writeInt(50);

 System.out.println("Current Length of File is : "+file.length());

}

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

}

Output

14.10 Interactive input and output

A standard task in Java programming is to get interactive input from the

user; that is, toread in a number or a string typed at the keyboard.

Reading Console Input

In Java, console input is accomplished by reading from System.in. To

obtain a character-based stream that is attached to the console, you wrap

System.in in a BufferedReader object, to create a character stream.

BuffereredReader supports a buffered input stream. BufferedReader

Constructor,

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of

BufferedReader that is being created. Reader is an abstract class. One of

its concrete subclasses is InputStreamReader, which converts bytes to

characters. To obtain an InputStreamReader object that is linked to

System.in, use the following constructor:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used

for inputStream. Putting it all together, the following line of code creates a

BufferedReader that is connected to the keyboard:

 Input / Output Classes

 NOTES

Self-Instructional Material

183

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

where br is a character-based stream that is linked to the console through

System.in.

Writing Console Output

PrintStream is an output stream derived from OutputStream, it also

implements the low-level method write(). Thus, write() can be used to

write to the console.

The simplest form of write() defined by PrintStream is shown here:

void write(int byteval)

This method writes to the stream the byte specified by byteval. Although

byteval is declared as an integer, only the low-order eight bits are written.

 Example that uses write() to output the character “J” followed by a

newline to the console:

class PrintDemo

{

public static void main(String args[])

{

int b; b = 'J';

System.out.write(b);

System.out.write('\n');

}

}

14.11 Check Your Progress Questions

1. When I/O exception occurs?

2. What is the purpose of Data Streams?

14.12 Answers to Check Your Progress Questions

1. I/O exception occurs when an IO operation has failed for some reason.

It is also a checked exception which means that your program has to

handle it.

Input / Output classes

NOTES

Self-Instructional Material

184

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

2. Data streams perform binary I/O operation on primitive data type

values (boolean, char, byte, short, int, long, etc.) as well as on String

values.

14.13 Summary

A stream is an abstraction that either produces or consumes

information.The File class allows you to obtain and manipulate the

information about a file such as permissions, size, time and so on. Unlike

the other classes of java.io package, this class does not operate on the

streams; it deals directly with the files and file system.Java provides a

number of classes and methods that allow you to read and write (create)

files. In Java, all files are byte-oriented, and Java provides methods to read

and write bytes from and to a file.The RandomAccesFile class is used for

reading and writing to random access file. A random access file behaves

like a large array of bytes.

14.14 Key Words

 Streamis an abstraction that either produces or consumes

information.

 RandomAccesFile class is used for reading and writing to random

access file. A random access file behaves like a large array of bytes.

14.15 Self-Assessment Questions and Exercises

1) Write short note on PrintWriter class.

2) Briefly explain about File streams.

3) What is the use of Data streams? Explain about DataStream classes.

4) Explain in detail about RandomAccessFile class? What are its

constructors and methods?

5) Discuss in detail about interactive input / output operations in Java.

14.16 Further Readings

1. R. Krishnamoorthy and S. Prabhu, Internet and Java Programming,

New Age International Publishers, 2004

2. Programming with Java, 4e, E. Balagurusamy, Tata McGraw-Hill,

2010.

3. Deitel, Deitel and Nieto, Internet and World Wide Web – How to

program, Pearson Education, 2000.

 Input / Output Classes

 NOTES

Self-Instructional Material

185

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

4. Naughton and H.Schildt, Java 2 - The complete reference, Tata

McGraw-Hill, Fourth edition, 2006.

5. Elliotte Rusty Harold, Java Network Programming, O’Reilly

Publishers, 2000.

6. B.Mohamal Ibrahim , Java : J2SE – A Practical Approach, Firewall

media, 2006.

7. Cay S. Horstmann, Gary Cornell, Core Java, Volume I and II, 5th

Edition, Pearson Education, 2003.

8. Topley, J2ME in A Nutshell, O’Reilly Publishers, 2002.

9. Hunt, Guide to J2EE Enterprise Java, Springer Publications, 2004.

10. Ed Roman, Enterprise Java Beans, Wiley Publishers, 1998

186

MODEL QUESTION PAPER

DISTANCE EDUCATION

B.SC (INFORMATION TECHNOLOGY) EXAMINATION

INTERNET AND JAVA PROGRAMMING

Second Year - Third Semester

(CBCS – 2018-19 Academic Year Onwards)

Time : 3 hours Max Marks :75

PART - A (10 x 2=20 Marks)

Answer all questions.

1. List the names of Internet Service Providers (ISP) in India.

2. Name any two search engines.

3. What is meant by virtual machine?

4. Define Data abstraction.

5. Write short note on : Java Support System

6. What is the use of ‘final’ keyword?

7. Define Applet.

8. What are the types of errors?

9. What is the purpose of data stream classes?

10. State the importance of synchronization.

PART - B (5 x 5 Marks = 25 Marks)

Answer all questions choosing either (a) or (b)

.

11. (a)Briefly explain about Domain Name system.

Or

(b) Write short note on : Connecting internet.

12. (a) How java differs from C++? Explain.

Or

(b)Briefly explain about the applications of Java.

13. (a) Summarize the use of Wrapper classes and its methods.

Or

(b) Write a java program to illustrate method overriding.

14. (a) Write an applet program to draw a car.

Or

(b) Discuss about the life cycle of a thread with neat sketch.

15. (a) Explain about handling Random Access files in Java.

Or

(b) Write short note on : Input / Output Exception

187

Part – C (3 x 10 = 30 Marks)

Answer any three questions.

16. Discuss in detail about e-mail communication with its features

17. Elucidate about any two types of inheritances with neat diagram

and example.

18. How will you handle multiple catch clauses? Explain with example.

19. Describe about basic concepts of object oriented programming?

What are its advantages? Explain.

20. Explain in detail about reading / writing bytes in Java. Give

Example.

’

Master of Computer Applications
31533

INTERNET AND JAVA PROGRAMMING
III - Semester

ALAGAPPA UNIVERSITY
[Accredited with A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

IN
T

E
R

N
E

T
 A

N
D

 J
A

V
A

 P
R

O
G

R
A

M
M

IN
G

M

a
s
te

r o
f C

o
m

p
u

te
r A

p
p

lic
a

tio
n
s

	[Accredited with Grade by NAAC (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC]
	Master of Computer Applications

